Shock : molecular, cellular, and systemic pathobiological aspects and therapeutic approaches : the official journal the Shock Society, the European Shock Society, the Brazilian Shock Society, the International Federation of Shock Societies
-
Acute lung injury (ALI) is characterized by excessive production of inflammatory factors and alveolar epithelial damage, type II alveolar epithelial (ATII) cells participate in the repairment of the damaged lung tissue in ALI. Recently, microRNAs (miRNAs) have been found to play crucial roles in the amelioration of various inflammation-induced diseases, including ALI. However, the biological function and the mechanisms of action of miRNAs in the regulation of inflammation, and how ATII cells repair damaged lung tissue in ALI remain unknown. ⋯ Ultimately, our study demonstrated that expression of p38, JNK, and ERK in LPS-induced ATII cells increased significantly. These results suggest that miR-541-5p is a key effector in ALI tissue, and that LPS-induced ATII cells act by regulating HMGB1 expression. This effect may be related to excessive activation of the JNK/ERK/p38 signaling pathway.
-
Hemorrhagic shock is the important factor for causing death of trauma and war injuries. However, pathophysiological characteristics and underlying mechanism in hemorrhagic shock with hot environment remain unclear. ⋯ Hot environment accelerated the death of hemorrhagic shock rats, which was related to the disorder of internal environment, the increase of inflammatory and stress factors. Furthermore, moderate hypothermic (10°C) fluid resuscitation was suitable for the treatment of hemorrhagic shock in hot environment.
-
To investigate the activity of key rate-limiting enzymes of glucose metabolism after restoration of spontaneous circulation (ROSC), to explore the potential pathophysiological mechanism of impaired myocardial energy metabolism after cardiopulmonary resuscitation (CPR). ⋯ Lowered key rate-limiting enzymes activity in glucose metabolism resulted in impairment of energy production in the early stage of ROSC, but partially recovered in 24 h. This process has a role in the mechanism of impaired myocardial energy metabolism after CPR. This investigation might shed light on new strategies to treat post resuscitation myocardial dysfunction.
-
Severe hemorrhage (Hem) has been shown to be causal for the development of extra-pulmonary/indirect acute respiratory distress syndrome (iARDS) and is associated with severe endothelial cell (EC) injury. EC growth factors, Angiopoietin (Ang)-1 and -2, maintain vascular homeostasis via tightly regulated competitive interaction with the tyrosine kinase receptor, Tie2, expressed on ECs. ⋯ Together, these data imply that shock-induced increased expression of Tie1 can contribute to EC activation by inhibiting Ang:Tie2 interaction, culminating in EC dysfunction and the development of iARDS.
-
Randomized Controlled Trial
Esmolol TO Treat The Hemodynamic Effects of Septic Shock: A Randomized Controlled Trial.
Septic shock is often characterized by tachycardia and a hyperdynamic hemodynamic profile. Use of the beta antagonist esmolol has been proposed as a therapy to lower heart rate, thereby improving diastolic filling time and improving cardiac output, resulting in a reduction in vasopressor support. ⋯ Among patients with septic shock, infusion of esmolol did not improve vasopressor requirements or time to shock reversal. Esmolol was associated with decreased levels of C-reactive protein over 24 h.