Shock : molecular, cellular, and systemic pathobiological aspects and therapeutic approaches : the official journal the Shock Society, the European Shock Society, the Brazilian Shock Society, the International Federation of Shock Societies
-
The incidence and mortality of acute respiratory distress syndrome (ARDS) are high, but the relevant mechanism for this disorder remains unclear. Autophagy plays an important role in the development of ARDS. The mitochondrial outer membrane protein FUNDC1 is involved in hypoxia-mediated mitochondrial autophagy, which may contribute to ARDS development. ⋯ Levels of autophagy in lipopolysaccharide-induced mice deficient in FUNDC1 were significantly decreased, but the expression of ROS and inflammatory factors in lung tissue was more severe than in lipopolysaccharide-induced wild-type mice, and the survival rate was significantly decreased. Western blot analysis showed that autophagy was significantly inhibited in the FUNDC1 KO+LPS group, and there was a significant increase in NLRP3, caspase-1, IL-1β, and ASC compared with the lipopolysaccharide-induced wild-type group. In summary, lipopolysaccharide-induced wild-type mice exhibit ROS-dependent activation of autophagy, and knocking out FUNDC1 promotes inflammasome activation and exacerbates lung injury.
-
In the last few decades, obesity became one of the world's greatest health challenges reaching a size of global epidemic in virtually all socioeconomic statuses and all age groups. Obesity is a risk factor for many health problems and as its prevalence gradually increases is becoming a significant economic and health burden. In this manuscript we describe how normal respiratory and cardiovascular physiology is altered by obesity. We review past and current literature to describe how obesity affects outcomes of patients facing critical illnesses and discuss some controversies related to this topic.