Shock : molecular, cellular, and systemic pathobiological aspects and therapeutic approaches : the official journal the Shock Society, the European Shock Society, the Brazilian Shock Society, the International Federation of Shock Societies
-
Sepsis is an amplified systemic immune-inflammatory response produced by a microorganism, which involves activation of inflammatory cytokine signaling pathways and oxidative stress. A variety of studies have shown that hydralazine (HDZ) has potent antioxidant and anti-inflammatory proprieties. Therefore, we hypothesize that HDZ can improve the clinical outcome of sepsis. ⋯ Additionally, HDZ significantly prevented the increase of Akt activation in the liver and kidney. HDZ largely mitigated the effects of sepsis by suppressing inflammatory and antioxidant responses via the PI3K/Akt pathway. These findings provide evidence that HDZ can be a new therapeutic alternative for treating sepsis.
-
Resuscitative endovascular balloon occlusion of the aorta (REBOA) is a lifesaving technique for the management of lethal torso hemorrhage. Its benefit, however, must be weighed against the lethal distal organ ischemia-reperfusion injury (IRI). This study uses a novel direct gut cooling technique to manage the distal organ IRI. ⋯ Direct trans-rectal colon cooling during REBOA management of lethal hemorrhage offers extraordinary functional improvement and amazing tissue protection, and abolishes mortality.
-
Comparative Study
Therapeutic Methods for Gut Microbiota Modification in Lipopolysaccharide-Associated Encephalopathy.
To compare the efficacy of four therapeutic methods to modify gut microbiota dysbiosis and brain dysfunction in septic rats. ⋯ Among the four methods, fecal microbiota transplantation was the most useful method to modify the dysbiosis of intestinal microbiota and improve brain function in septic rats. These findings reveal the protective consequence of microbiota modification, and the findings suggest opportunities to improve brain function in sepsis.
-
Cardiac output (CO) is an important parameter in fluid management decisions for treating hemodynamically unstable patients in intensive care unit. The gold standard for CO measurements is the thermodilution method, which is an invasive procedure with intermittent results. Recently, electrical impedance tomography (EIT) has emerged as a new method for noninvasive measurements of stroke volume (SV). ⋯ The bias of the measured SV data using EIT and PCA was 0 mL, and the limits of agreement were ±3.6 mL in the range of 17.6 mL to 51.0 mL. The results of the animal experiments suggested that EIT is capable of measuring beat-to-beat SV changes during mini-fluid challenge and determine preload responsiveness. Further animal and clinical studies will be needed to demonstrate the feasibility of the EIT method as a new tool for fluid management.