Shock : molecular, cellular, and systemic pathobiological aspects and therapeutic approaches : the official journal the Shock Society, the European Shock Society, the Brazilian Shock Society, the International Federation of Shock Societies
-
Patients with chronic neuropathic pain (NP) have a significantly increased risk of central nervous degeneration. Trigeminal neuralgia (TN) is a typical NP, and this manifestation is more obvious. In addition to severe pain, patients with TN are often accompanied by cognitive dysfunction and have a higher risk of central nervous system degeneration, but the mechanism is not clear. ⋯ Interestingly, NLRP3 specific blocker MCC950 can alleviate the neurodegeneration of trigeminal neuralgia rats to a certain extent. It is suggested that our NLRP3 inflammasome plays an important role in the neurodegeneration of trigeminal neuralgia rats. And it is related to the activation of central nervous system inflammation.
-
Vascular hypo-reactivity plays a critical role inducing organ injury during hemorrhagic shock. 17β-estradiol (E2) can induce vasodilation to increase blood flow in various vascular beds. This study observed whether E2 can restore vascular hypo-reactivity induced by hemorrhagic shock, and whether E2 effects are associated with RhoA-Rho kinase (ROCK)-myosin light chain kinase phosphatase (MLCP) pathway. The hemorrhagic shock model (40 ± 2 mm Hg for 1 h, resuscitation for 4 h) was established in ovary intact sham operation (OVI), ovariectomized (OVX), and OVX plus E2 supplement female mice. ⋯ In OVX plus E2 supplement mice with hemorrhagic shock, Y-27632 inhibited microvascular reactivity, which was abolished by concomitant U-46619 application. Lastly, hemorrhagic shock remarkably decreased intestinal loop blood flow, RhoA and ROCK mRNA expressions in vascular tissues in OVX females, but not in OVI females, which were reversed by E2 supplement. These results indicate that estrogen improves microvascular reactivity during hemorrhagic shock, and RhoA-ROCK signaling pathway may mediate E2 effects.