Shock : molecular, cellular, and systemic pathobiological aspects and therapeutic approaches : the official journal the Shock Society, the European Shock Society, the Brazilian Shock Society, the International Federation of Shock Societies
-
The response to glucocorticoids treatment may be different between coronavirus disease 2019 (Covid-19) and severe acute respiratory syndrome (SARS). ⋯ Glucocorticoids treatment reduced mortality in COVID-19 and SARS patients of critical severity; however, different curative effects existed between the two diseases among subpopulations, mainly regarding sex- and age-specific effects, optimal doses, and use timing of glucocorticoids.
-
Multicenter Study
Increased Intracranial Hemorrhage Amid Elevated Inflammatory Markers in those with COVID-19 Supported with Extracorporeal Membrane Oxygenation.
COVID-19-related coagulopathy is a known complication of SARS-CoV-2 infection and can lead to intracranial hemorrhage (ICH), one of the most feared complications of extracorporeal membrane oxygenation (ECMO). We sought to evaluate the incidence and etiology of ICH in patients with COVID-19 requiring ECMO. Patients at two academic medical centers with COVID-19 who required venovenous-ECMO support for acute respiratory distress syndrome (ARDS) were evaluated retrospectively. ⋯ The ICH group had higher C-reactive protein (P = 0.04), procalcitonin levels (P = 0.02), and IL-6 levels (P = 0.05), lower blood pH before and after ECMO (P < 0.01), and higher activated partial thromboplastin times throughout the hospital stay (P < 0.0001). ICH-free survival was lower in COVID-19 patients than in patients on ECMO for ARDS caused by other viruses (49% vs. 79%, P = 0.02). In conclusion, patients with COVID-19 can be successfully bridged to recovery using ECMO but may suffer higher rates of ICH compared to those with other viral respiratory infections.
-
Lactic acidosis after cardiac surgery with cardiopulmonary bypass is common and associated with an increase in postoperative morbidity and mortality. A number of potential causes for an elevated lactate after cardiopulmonary bypass include cellular hypoxia, impaired tissue perfusion, ischemic-reperfusion injury, aerobic glycolysis, catecholamine infusions, and systemic inflammatory response after exposure to the artificial cardiopulmonary bypass circuit. Our goal was to examine the relationship between early abnormalities in microcirculatory convective blood flow and diffusive capacity and lactate kinetics during early resuscitation in the intensive care unit. We hypothesized that patients with impaired microcirculation after cardiac surgery would have a more severe postoperative hyperlactatemia, represented by the lactate time-integral of an arterial blood lactate concentration greater than 2.0 mmol/L. ⋯ Low perfused vessel density and high microcirculatory heterogeneity are associated with an increased intensity and duration of lactic acidosis after cardiac surgery with cardiopulmonary bypass.
-
A potential cause of the variable response to injury and sepsis is the variability of a patient's human glucocorticoid receptor (hGR) profile. To identify hGR variants, blood samples were collected on admission and biweekly thereafter from hospitalized patients who sustained at least a 20% total body surface area burn injury. A hyperactive G1376T single-nucleotide polymorphism (SNP) isoform was identified. ⋯ With the combination of both RU486 and hydrocortisone, G459V activity was repressed, but greater than that of RU486 alone. Finally, when hGRα was cotransfected with G459V to simulate isoform interaction, the activity was closer to that of the hGRα profile than the G459V isoform. The unique activity of the G459V isoform shows that some variants of hGR have the potential to alter a person's response to stress and steroid treatment and may be a factor as to why mitigating the clinical response to sepsis and other stressors has been so elusive.
-
Splanchnic vasodilation by inodilators is an argument for their use in critical cardiac dysfunction. To isolate peripheral vasoactivity from inotropy, such drugs were investigated, and contrasted to vasopressors, in a fixed low cardiac output (CO) model resembling acute cardiac dysfunction effects on the gastrointestinal tract. We hypothesized that inodilators would vasodilate and preserve the aerobic metabolism in the splanchnic circulation in low CO. ⋯ Splanchnic vasodilation by levosimendan and milrinone may be negligible in low CO, thus rejecting the hypothesis. High-dose vasopressors may have side effects in the splanchnic circulation.