Shock : molecular, cellular, and systemic pathobiological aspects and therapeutic approaches : the official journal the Shock Society, the European Shock Society, the Brazilian Shock Society, the International Federation of Shock Societies
-
Sepsis is one of the most important causes of maternal mortality. In our previous work, we established a polymicrobial sepsis (cecal ligation and puncture [CLP]) model in murine pregnancy and found that pregnant mice had a greater susceptibility to septic shock. In this model, mortality seemed to be associated with the development of early hemodynamic dysfunction and although circulating cytokine levels were similar, "off target" lung inflammatory cell numbers were greater in pregnant mice. ⋯ Both Imipenem and L-257 treatment alone slightly improved mortality rates from 13% (NaCl) to 20% (Imipenem) and 33% (L-257), whereas the combination of Imipenem and L-257 significantly improved survival to 50%. Imipenem and L-257 together prevented cardiovascular collapse and improved both organ function and bacterial killing, but did not reduce lung inflammatory cell numbers and actually increased lung cytokine levels. These data suggest that conventional management in combination with selective inhibition of DDAH1 may have therapeutic potential in the management of sepsis in pregnancy.
-
Renal ischemia-reperfusion injury (IRI) is a major cause of acute kidney injury (AKI) and even induces remote organ damage. Accumulating proofs demonstrates that the endocannabinoid system may provide a promising access for treatment strategy of renal IRI associated AKI. In the current study, using the established renal IRI model of rat, we tested the hypothesis that pretreatment of URB602, 30 min before renal IRI, alleviates kidney injury and relevant distant organ damage via limiting oxidative stress and inflammation. ⋯ The URB602 pretreatment in renal IRI, further enhanced renal 2-AG which is high affinity to both CB1 and CB2, and reduced renal COX-2 which is involved in the regulation of renal perfusion and inflammation. AM630 (CB2 antagonist) almost blocked all the antioxidant, anti-inflammatory and nephroprotective effects of URB602, whereas AM251 (CB1 antagonist) showed limited influence, and parecoxib (COX-2 inhibitor) slightly ameliorated renal function at the dose of 10 mg/kg. Taken together, our data indicate that URB602 acts as a reactive oxygen species scavenger and anti-inflammatory media in renal IRI mainly depending on the activation of CB2.
-
Hydrogen gas (H2) inhalation during hemorrhage stabilizes post-resuscitation hemodynamics, improving short-term survival in a rat hemorrhagic shock and resuscitation (HS/R) model. However, the underlying molecular mechanism of H2 in HS/R is unclear. Endothelial glycocalyx (EG) damage causes hemodynamic failure associated with HS/R. In this study, we tested the hypothesis that H2 alleviates oxidative stress by suppressing xanthine oxidoreductase (XOR) and/or preventing tumor necrosis factor-alfa (TNF-α)-mediated syndecan-1 shedding during EG damage. ⋯ H2 inhalation after shock stabilized hemodynamics and improved survival rates in an HS/R model independent of XOR. The therapeutic action of H2 was partially mediated by inhibition of TNF-α-dependent syndecan-1 shedding.
-
Genistein (Gen) exhibits strong anti-oxidative/antinitrative activity and cardioprotective effects in several models; however, its role in burn-induced myocardial injury is unknown. This study investigated the protective effect of Gen on burn-induced myocardial injury and aimed to elucidate the mechanism of protection. Mice were injected with Gen, intraperitoneally, at different dose immediately after burn injury. ⋯ More importantly, Gen significantly up-regulated the expression of NICD1 and Hes1 after burn injury. In addition, genetic knockout of Notch1 not only blocked the cardioprotection of Gen but also markedly attenuated Gen-induced anti-oxidative/antinitrative effect. These results demonstrate, for the first time, that Gen treatment attenuates burn-induced myocardial injury via the Notch1 mediated suppression of oxidative/nitrative stress.