Shock : molecular, cellular, and systemic pathobiological aspects and therapeutic approaches : the official journal the Shock Society, the European Shock Society, the Brazilian Shock Society, the International Federation of Shock Societies
-
Introduction: Intestinal flora and the translocation of its products, such as muramyl dipeptide (MDP), are common causes of sepsis. MDP is a common activator of the intracellular pattern recognition receptor NOD2, and MDP translocation can cause inflammatory damage to the small intestine and systemic inflammatory responses in rats. Therefore, this study investigated the effects of MDP on the intestinal mucosa and distant organs during sepsis and the role of the NOD2/AMPK/LC3 pathway in MDP-induced mitochondrial dysfunction in the intestinal epithelium. ⋯ Compared to the MDP+LPS groups, the MDP+SPEN+LPS groups had decreased IL-6 and MDP production, increased AMPK and LC3 protein expression, and protected mitochondrial and organ functions. Conclusions: MDP translocation reduced mitochondrial autophagy by regulating the NOD2/AMPK/LC3 pathway, causing mitochondrial dysfunction. SPEN protected against MDP-induced impairment of intestinal epithelial mitochondrial function during sepsis.
-
Proinflammatory hyperactivation of Kupffer cells (KCs) is foremost involved in the pathogenesis of sepsis-induced liver injury. Our previous study found that stimulator of interferon genes (STING) signaling was activated in KCs in response of lipopolysaccharide (LPS) and knocking down dynamin-related protein 1 (DRP1) in KCs effectively inhibited the activation of STING signaling and the subsequent production of proinflammatory cytokines. In this study, we demonstrated that in vivo treatment with mitochondrial division inhibitor 1 (Mdivi-1), a selective inhibitor of DRP1, alleviated cecal ligation and puncture (CLP)-induced liver injury with the improvement of liver pathology and function. ⋯ The further study showed that Mdivi-1 markedly attenuated STING signaling activation in KCs and inhibited systemic inflammatory response. Importantly, DMXAA application in CLP mice blunted Mdivi-1's liver protection effect. Taken together, our study confirmed Mdivi-1 effectively alleviated CLP-induced liver injury partially through inhibiting STING signaling activation in KCs, which provides new insights and a novel potential pharmacological therapeutic target for treating septic liver injury.
-
Background : Postresuscitation cardiac dysfunction is a significant contributor to early death following cardiopulmonary resuscitation (CPR). Therapeutic hypothermia (TH) mitigates myocardial dysfunction due to cardiac arrest (CA); however, the underlying mechanism remains unclear. Sirtuin 3 (Sirt3) was found to affect autophagic activity in recent research, motivating us to investigate its role in the cardioprotective effects of TH in the treatment of CA. ⋯ An in vitro study further showed that TH-induced restoration of disrupted autophagic flux by OGD/R was attenuated by pretreatment with Sirt3-siRNA, and this attenuation was partially rescued by the inhibition of PI3K/Akt/mTOR signaling cascades. Conclusions : Sirt3 mediates the cardioprotective effect of TH by restoring autophagic flux via the PI3K/Akt/mTOR pathway. These findings suggest the potential of Sirt3 as a therapeutic target for CA.
-
Randomized Controlled Trial
Renal protective effect and clinical analysis of vitamin B6 in patients with sepsis.
Objective: To investigate the protective effect and possible mechanisms of vitamin B 6 against renal injury in patients with sepsis. Methods: A total of 128 patients with sepsis who met the entry criteria in multiple centers were randomly divided into experimental (intravenous vitamin B 6 therapy) and control (intravenous 0.9% sodium chloride therapy) groups based on usual care. Clinical data, the inflammatory response indicators interleukin 6 (IL-6), interleukin 8 (IL-8), tumor necrosis factor (TNF-α), and endothelin-1 (ET-1), the oxidative stress response indicators superoxide dismutase, glutathione and malondialdehyde, and renal function (assessed by blood urea nitrogen, serum creatinine, and renal resistance index monitored by ultrasound) were compared between the two groups. ⋯ There was no statistical difference between the two groups in the rate of renal replacement therapy and 28 d mortality ( P > 0.05). However, the intensive care unit length of stay and the total hospitalization expenses in the experimental group were significantly lower than those in the control group ( P < 0.05). Conclusion: The administration of vitamin B 6 in the treatment of patients with sepsis attenuates renal injury, and the mechanism may be related to pyridoxine decreasing the levels of inflammatory mediators and their regulation by redox stress.
-
Sepsis is a life-threatening organ dysfunction caused by an unregulated host response to infection. It is an important clinical problem in acute and critical care. ⋯ Great progress has been made in the study of sepsis-associated rodent models and in vitro cellular models. However, the evidence of curcumin in the clinical management practice of sepsis is still insufficient; hence, it is very important to systematically summarize the study of curcumin and sepsis pathogenesis.