Shock : molecular, cellular, and systemic pathobiological aspects and therapeutic approaches : the official journal the Shock Society, the European Shock Society, the Brazilian Shock Society, the International Federation of Shock Societies
-
In this study, we aimed to compare the effects of low- and high-quality cardiopulmonary resuscitation (CPR) on cardioprotection by induced hypothermia (IH) at 34 °C and examine whether extracellular signal-regulated kinase or endothelial nitric oxide synthase mediates this cardioprotection. Left ventricle infarct sizes were evaluated in six groups of rat hearts (n = 6) following Langendorff perfusion and triphenyltetrazolium chloride staining. Controls underwent 30 min of global ischemia at 37 °C, followed by 10 min of simulated low- or high-quality CPR reperfusion and 90 min of reperfusion at 75 mmHg. ⋯ U0126 reversed the IH-induced cardioprotection (45.9% ± 9.4%, P = 0.010), whereas L-NIO had no significant effect. Cardiopulmonary resuscitation quality affects IH-induced cardioprotection. Extracellular signal-regulated kinase may mediate IH-induced cardioprotection.
-
Immune depression after trauma-hemorrhage has been implicated as an important factor in the pathogenesis of sepsis and septic-organ failure. Although recent studies have implicated immune-cell apoptosis as an important factor in the evolution of this posttrauma immune-suppressed state, neither the initial triggers that induce this response nor the cellular pathways through which these triggering pathways act have been fully defined. Thus, the current study tests the hypothesis that acute splenic and thymic immune-cell apoptosis developing after trauma-hemorrhagic shock (T/HS) is due to gut-derived factors carried in intestinal lymph and that this T/HS lymph-induced immune depressed state is mediated through Toll-like receptor 4 (TLR4). ⋯ However, the TLR4mut mice were resistant to T/HS lymph-induced splenic apoptosis. Furthermore, the WT, but not the TLR4mut mice developed splenic apoptosis after actual T/HS. In conclusion, gut-derived factors appear to initiate a sequence of events that leads to an acute increase in splenic and thymic immune-cell apoptosis, and this process is TLR4-dependent.