Shock : molecular, cellular, and systemic pathobiological aspects and therapeutic approaches : the official journal the Shock Society, the European Shock Society, the Brazilian Shock Society, the International Federation of Shock Societies
-
Although aberrant fibrinolysis and plasminogen activator inhibitor 1 (PAI-1) are implicated in acute lung injury, the role of this serpin in the pathogenesis of wood bark smoke (WBS)-induced acute lung injury (SIALI) and its regulation in resident lung cells after exposure to smoke are unclear. A total of 22 mechanically ventilated pigs were included in this study. Immunohistochemical analyses were used to assess fibrin and PAI-1 in the lungs of pigs with SIALI in situ. ⋯ In pleural mesothelial cells, lung fibroblasts, and alveolar type II cells, PAI-1 mRNA was stabilized by WBS extract and contributed to induction of PAI-1. The mechanism involves dissociation of a novel 6-phospho-d-gluconate-NADP oxidoreductase-like PAI-1 mRNA binding protein from PAI-1 mRNA. Exposure to WBS induces prominent airway and mesothelial expression of PAI-1, associated with florid distribution of fibrin in SIALI in vivo Wood bark smoke components induce PAI-1 in vitro in part by stabilization of PAI-1 mRNA, a newly recognized pathway that may promote extravascular fibrin deposition and lung dysfunction in SIALI.
-
Indirect acute lung injury (ALI) is a common manifestation in critically ill patients. Using a model of indirect ALI in mice, our laboratory has shown that local/pulmonary inhibition of extrinsic death receptor protein (Fas) leads to a decrease in lung inflammation and improved survival. However, it is unknown if local, i.e., autocrine/paracrine, inhibition of Fas ligand (FasL) affects Fas-expressing target cells itself or blockade of the actions of a more distal/endocrine source of FasL that accounts for these findings. ⋯ After intratracheal delivery of FasL siRNA, there was a significant decrease in inflammatory cytokines, myeloperoxidase activity, and caspase 3 activity in lung tissue along with protein leak as compared with controls. There was no difference found in these various outcome markers between those treated with intravenously administered FasL siRNA versus controls. The observation that local silencing of FasL, as opposed to distal/systemic silencing, ameliorates the effects of indirect ALI suggests not only that FasL produced in an autocrine/paracrine fashion in local tissues has pathological consequences within the lungs, but also that FasL might be a valuable pulmonary therapeutic target.
-
Burn injury initiates an enhanced inflammatory condition referred to as the systemic inflammatory response syndrome or the two-hit response phenotype. Prior reports indicated that macrophages respond to injury and demonstrate a heightened reactivity to Toll-like receptor stimulation. Since we and others observed a significant increase in splenic GR-1 F4/80 CD11b macrophages in burn-injured mice, we wished to test if these macrophages might be the primary macrophage subset that shows heightened LPS reactivity. ⋯ However, further investigations showed that LPS-induced TNF-α production was significantly influenced by CD4 T cells. Taken together, these data indicate that GR-1 F4/80 CD11b macrophages represent the primary macrophage subset that expands in response to burn injury and that CD4 T cells do not influence the GR-1 macrophage expansion process, but do suppress LPS-induced TNF-α production. These data suggest that modulating GR-1 macrophage activation as well as CD4 T cell responses after severe injury may help control the development of systemic inflammatory response syndrome and the two-hit response phenotype.
-
Previous studies found increased circulating levels of biomarkers related to endothelial cell activation in patients with sepsis, particularly in the most severe sepsis stages of sepsis shock. It remains unclear, however, whether this activation is mainly driven by sepsis-specific mechanisms or occurs as a generalized inflammatory response. The objective of this analysis was to compare patterns of biomarkers of endothelial cell activation in patients with hypotension due to sepsis and nonsepsis etiologies. ⋯ Logistic regression analysis, adjusted for age, sex, mean blood pressure level, and mortality, confirmed a significant association of E-selectin (odds ratio [OR], 3.7; 95% confidence interval [CI], 1.7-7.8, P < 0.001) and sFLT-1 (OR, 2.0; CI, 1.1-3.8; P < 0.03) with sepsis etiology. Biomarkers VCAM-1 (OR, 2.0; CI, 0.88-4.4; P = 0.1), VEGF (OR, 1.5; CI, 0.98-2.2; P = 0.06), ICAM-1 (OR, 1.5; CI, 0.9-2.6; P = 0.2), and PAI-1 (OR, 1.4; CI, 0.8-2.3; P = 0.2) did not reach statistical significance. This study found a sepsis-specific activation of endothelium activation markers, particularly E-selectin and sFLT-1, in emergency department patients with hypotension.
-
Evidence from animal models of trauma and hemorrhage has suggested that the gut plays an active role in the pathogenesis of systemic inflammatory responses and multiple organ dysfunction syndrome. The aim of the present study was to seek evidence for gut-derived signals in man in a group of eight patients undergoing elective abdominal aortic reconstruction, a procedure that is associated with sterile tissue injury, controlled colonic ischemia as a consequence of aortic cross-clamping, and a significant risk of developing systemic inflammation and multiple organ dysfunction syndrome. ⋯ There was, however, evidence of an increase in the expression of RAGE (receptor for advanced glycation end products) by endothelial cells following exposure to mesenteric venous, but not central, plasma sampled during maximum ischemia. In conclusion, during sterile tissue injury and controlled colonic ischemia-reperfusion in man, there is a marked systemic proinflammatory response, which is in part gut derived, in the absence of evidence for the presence of toxic endothelial factors or gut-derived microorganisms in the central or mesenteric circulations.