Shock : molecular, cellular, and systemic pathobiological aspects and therapeutic approaches : the official journal the Shock Society, the European Shock Society, the Brazilian Shock Society, the International Federation of Shock Societies
-
Resveratrol protects against organ injury caused by trauma-hemorrhage, although the mechanism remains unknown. We have previously shown that it exerts protective effects in the liver via estrogen receptors and their signaling. Thus, we set out to determine whether resveratrol-mediated estrogen receptor-dependent p38 mitogen-activated protein kinase (MAPK)/heme oxygenase 1 activation protects the intestine after trauma-hemorrhage. ⋯ Administration of ICI 182,780, SB-203850, or chromium-mesoporphyrin with resveratrol abolished the resveratrol-mediated improvement of the above parameters. Resveratrol administration also attenuated trauma-hemorrhage-induced cardiac dysfunction and edema of the lung. These results suggest that estrogen receptor-dependent upregulation of the p38 MAPK/heme oxygenase 1 pathway plays a critical role in mediating the salutary effects of resveratrol on shock-induced intestinal injury.
-
To investigate the effect of Shen-Fu injection (SFI) for the management of postresuscitation myocardial dysfunction in a porcine model of cardiac arrest. Ventricular fibrillation was induced electrically in anesthetized domestic swine. After 4 min of untreated ventricular fibrillation, cardiopulmonary resuscitation was initiated. ⋯ The SFI treatment also produced lower serum cardiac troponin I, lactate levels, and left ventricle malondialdehyde content after ROSC, whereas left ventricle superoxide dismutase, Na-K-ATPase, and Ca-ATPase activity were significantly increased in the SFI group when compared with saline group. The cardioprotective effect of SFI was further confirmed by myocardial ultrastructure examination. Shen-Fu injection can attenuate postresuscitation myocardial dysfunction through beneficial effects on energy metabolism and remarkable antioxidant capacity.
-
We studied whether low hemoglobin concentrations during normovolemia change the myocardial electrical current (electrocardiogram) in a pig model. Normovolemic anemia was achieved by stepwise replacing blood with colloids (hydroxyethyl starch 6%). We measured the length of the PQ-, QT-, QTc, and the ST interval as well as the amplitude of the Q wave and T wave at hemoglobin concentrations of 9.5, 8.0, 5.5, 3.8, and 3.3 g·dL. ⋯ Results were verified performing a time-frequency analysis on single heartbeats. During severe anemia and normovolemia, electrocardiographic changes can be detected. Further investigations are warranted to elucidate whether these changes indicate myocardial hypoxia.
-
Renal injury is one of the severe and common complications that occurs early in neonates with asphyxia, and reactive oxygen species have been implicated to play an important role on its pathogenesis. Improved renal recovery has been shown previously with N-acetyl-l-cysteine (NAC) in various acute kidney injuries. Using a subacute swine model of neonatal hypoxia-reoxygenation (H/R), we examined whether NAC can sustain its beneficial effect on renal recovery for 48 h. ⋯ N-acetyl-l-cysteine treatment also improved the renal function with the attenuation of elevated urinary N-acetyl-β-d-glucosaminidase activity and plasma creatinine concentration observed in H/R controls (both P < 0.05). The tissue levels of lipid hydroperoxides and caspase 3 in the kidney of NAC-treated animals were significantly lower than those of H/R controls. Conclusively, postresuscitation administration of NAC elicits a prolonged beneficial effect in improving renal functional recovery and reducing oxidative stress in newborn piglets with H/R insults for 48 h.
-
Experimental data have shown that mesenteric lymph from rats subjected to trauma-hemorrhagic shock (THS) but not trauma-sham shock induces neutrophil activation, cytotoxicity, decreased red blood cell (RBC) deformability, and bone marrow colony growth suppression. These data have led to the hypothesis that gut factors produced from THS enter the systemic circulation via the mesenteric lymphatics and contribute to the progression of multiple organ failure after THS. Ongoing studies designed to identify bioactive lymph agents implicated factors associated with the heparin use in the THS procedure. ⋯ Finally, incubation of HUVECs with purified lipoprotein lipase added to naive lymph-induced toxicity in vitro. These data show that heparin, not THS, is responsible for the reported lymph-mediated HUVEC toxicity through its release of lipases into the lymph. These findings can provide alternative explanations for several of the THS effects reported in the literature using heparin models, thus necessitating a review of previous work in this field.