Shock : molecular, cellular, and systemic pathobiological aspects and therapeutic approaches : the official journal the Shock Society, the European Shock Society, the Brazilian Shock Society, the International Federation of Shock Societies
-
Clinical Trial
Interplay between the acute inflammatory response and heart rate variability in healthy human volunteers.
The autonomic nervous system and the inflammatory response are intimately linked. Heart rate variability (HRV) analysis is a widely used method to assess cardiac autonomic nervous system activity, and changes in HRV indices may correlate with inflammatory markers. Here, we investigated whether baseline HRV predicts the acute inflammatory response to endotoxin. ⋯ Heart rate variability indices do not predict the acute inflammatory response in a standardized model of systemic inflammation. Although the acute inflammatory response results in HRV changes, no correlations with inflammatory cytokines were observed. Therefore, the magnitude of endotoxemia-related HRV changes does not reflect the extent of the inflammatory response.
-
Acute kidney injury (AKI) leads to increased lung microvascular permeability, leukocyte infiltration, and upregulation of soluble inflammatory proteins in rodents. Most work investigating connections between AKI and pulmonary dysfunction, however, has focused on characterizing whole lung tissue changes associated with AKI. Studies at the cellular level are essential to understanding the molecular basis of lung changes during AKI. ⋯ Further experiments using an in vitro rat pulmonary microvascular EC system revealed that AKI serum induced functional cellular changes related to apoptosis, including structural actin alterations and phosphatidylserine translocation. Analysis and segregation of both upregulated and downregulated genes into functional roles suggest that these transcriptional events likely participate in the transition to an activated proinflammatory and proapoptotic EC phenotype during AKI. Further mechanistic analysis of EC-specific events in the lung during AKI might reveal potential novel therapeutic targets for the deleterious kidney-lung crosstalk in the critically ill patient.
-
Indirect acute lung injury (ALI) is a common manifestation in critically ill patients. Using a model of indirect ALI in mice, our laboratory has shown that local/pulmonary inhibition of extrinsic death receptor protein (Fas) leads to a decrease in lung inflammation and improved survival. However, it is unknown if local, i.e., autocrine/paracrine, inhibition of Fas ligand (FasL) affects Fas-expressing target cells itself or blockade of the actions of a more distal/endocrine source of FasL that accounts for these findings. ⋯ After intratracheal delivery of FasL siRNA, there was a significant decrease in inflammatory cytokines, myeloperoxidase activity, and caspase 3 activity in lung tissue along with protein leak as compared with controls. There was no difference found in these various outcome markers between those treated with intravenously administered FasL siRNA versus controls. The observation that local silencing of FasL, as opposed to distal/systemic silencing, ameliorates the effects of indirect ALI suggests not only that FasL produced in an autocrine/paracrine fashion in local tissues has pathological consequences within the lungs, but also that FasL might be a valuable pulmonary therapeutic target.
-
The mechanisms contributing to sepsis vascular dysfunction are not well known. We tested the hypothesis that peroxynitrite scavenging ameliorates sepsis-induced macrovascular and microvascular dysfunction. Male Sprague-Dawley rats were killed 48 h after cecal ligation (n = 15) and puncture or sham procedure (n = 15). ⋯ Sepsis induced (i) in macrovessels, impairment of norepinephrine-induced contractions; (ii) in microvessels, impairment in norepinephrine-induced contractions and acetylcholine-induced relaxations; (iii) aortic and microvascular tissue increased reactivity to 3-nitrotyrosine, oxidized dihydroethidium, NOS2, and increased expression of NOS2, as well as increased expression of NOX-1 in microvascular tissue. Contractile responses in aortic and microvascular rings improved by ex vivo treatment with MnTMPyP and tempol, whereas vascular relaxation in microvessels improved only with MnTMPyP. Peroxynitrite scavenging protects from vascular dysfunction in sepsis.
-
Burn induces myeloid-derived suppressor cells (MDSCs), a heterogeneous population of immature polymorphonuclear neutrophils (PMNs) and monocytes, which protect against infection. Previous work from our laboratory demonstrated that inflammatory monocytes (iMos) were the major MDSC source of TNF-α in the postburn spleen, and we hypothesized that they were also the major source of postburn IL-10. To test this hypothesis, we examined cytokine production by postburn CCR2 knockout (KO) mice, which have fewer iMos than burn wild-type (WT) splenocytes, but equal numbers of PMNs and F4/80 macrophages. ⋯ Polymorphonuclear neutrophil and iMos subpopulations from culture-derived MDSCs produced the same cytokine profiles in response to LPS and peptidoglycan as did the PMNs and iMos from postburn spleens: PMNs made IL-10, whereas iMos made IL-6. Finally, LPS-induced mortality of burn mice was made worse by anti-Gr-1 depletion of all PMNs and 66% of iMos from burn mice. This suggests that PMNs play a primarily anti-inflammatory role in vitro and in vivo.