Shock : molecular, cellular, and systemic pathobiological aspects and therapeutic approaches : the official journal the Shock Society, the European Shock Society, the Brazilian Shock Society, the International Federation of Shock Societies
-
The prehospital environment is fraught with operational constraints, making it difficult to assess the need for resources such as lifesaving interventions (LSI) for adults with traumatic injuries. While invasive methods such as lactate have been found to be highly predictive for estimating injury severity and resource requirements, noninvasive methods, to include continuous vital signs (VS), have the potential to provide prognostic information that can be quickly acquired, interpreted, and incorporated into decision making. In this work, we hypothesized that an analysis of continuous VS would have predictive capacity comparable to lactate and other laboratory tests for the prediction of injury severity, need for LSIs and intensive care unit (ICU) admission. ⋯ The results from this study suggest that continuous VS obtained from autonomous monitors in an aeromedical environment may be helpful for predicting LSIs and the critical care requirements for traumatically injured adults. The collection and use of noninvasively obtained physiological data during the early stages of prehospital care may be useful for in developing user-friendly early warning systems for identifying potentially unstable trauma patients.
-
Mice used in biomedical research are typically housed at ambient temperatures (22-24 °C) below thermoneutrality (26-31 °C). This chronic cold stress triggers a hypermetabolic response that may limit the utility of mice in modeling hypermetabolism in response to burns. To evaluate the effect of housing temperature on burn-induced hypermetabolism, mice were randomly assigned to receive sham, small, or large scald burns. ⋯ Locomotion was significantly reduced in mice with large burns compared to sham and small burn groups, irrespective of sex or housing temperature (P < 0.05). Housing at 30 °C revealed sexual dimorphism in terms of the impact of burns on body mass and composition, where males with large burns displayed marked cachexia, whereas females did not. Collectively, this study demonstrates a sex-dependent role for housing temperature in influencing energetics and body composition in a rodent model of burn trauma.
-
New strategies are needed to mitigate further tissue injury during traumatic limb ischemia in cases requiring damage control resuscitation (DCR). Little is known about the pathophysiology and injury course in acute limb ischemia (ALI) with DCR in polytraumatized casualties. We therefore investigated the effects of therapeutic limb hypothermia in a swine model of ALI and DCR. ⋯ Cooling to 15oC significantly reduced local tissue metabolites compared to paired controls, while producing no significant increase in histologic damage, whereas cooling to 5oC increased histologic muscle damage. These results suggest an approach to prevention of ischemic injury through local hypothermia but warrant further functional testing.
-
Unplanned intensive care unit (ICU) admissions are associated with increased morbidity and mortality. This study uses interpretable machine learning to predict unplanned ICU admissions for initial nonoperative trauma patients admitted to non-ICU locations. ⋯ Machine learning may outperform prior attempts at predicting the risk of unplanned ICU admissions in trauma patients while identifying unique predictors. Despite this progress, further research is needed to improve predictive performance by addressing class imbalance limitations.
-
Sepsis, a life-threatening response to infection leading to systemic inflammation and organ dysfunction, has been hypothesized to be influenced by metabolic alterations in cerebrospinal fluid (CSF). Despite extensive research, the specific metabolic pathways contributing to sepsis remain unclear. This study aims to elucidate the causal relationships between CSF metabolites and sepsis risk using Mendelian Randomization (MR), offering insights that could lead to novel therapeutic strategies. ⋯ This study demonstrates significant causal associations between specific CSF metabolites and the risk of developing sepsis, highlighting the potential for these metabolites to serve as biomarkers or therapeutic targets. The bidirectional nature of these findings also suggests that sepsis itself may alter metabolic profiles, offering further avenues for intervention.