Shock : molecular, cellular, and systemic pathobiological aspects and therapeutic approaches : the official journal the Shock Society, the European Shock Society, the Brazilian Shock Society, the International Federation of Shock Societies
-
Comparative Study
Effect of body positions on hemodynamics and gas exchange in anesthetized pigs shortly after pneumonectomy.
Positional changes are thought to affect hemodynamics, respiratory mechanics, and gas exchange after pneumonectomy. The objective of this study was to compare hemodynamic and respiratory parameters and gas exchange in different positions before and after pneumonectomy. Twenty pigs were anesthetized and mechanically ventilated. ⋯ PaO2 was significantly higher in a lateral position, with the remaining lung uppermost. Our findings suggest that avoiding the supine positioning after pneumonectomy may facilitate improvements in hemodynamics and a decreased risk of hypoxemia. The optimal position for gas exchange after pneumonectomy is a lateral position, with the remaining lung in the uppermost position.
-
Lung recruitment maneuvers (RMs), used to reopen atelectatic lung units and to improve oxygenation during mechanical ventilation, may result in hemodynamic impairment. We hypothesize that pulmonary arterial hypertension aggravates the consequences of RMs in the splanchnic circulation. Twelve anesthetized pigs underwent laparotomy and prolonged postoperative ventilation. ⋯ The corresponding recovery to at least 90% of baseline regional blood flow and organ perfusion lasted 1 to 5 min. Importantly, the decreases in regional blood flows and organ perfusion and the time to recovery of these flows did not differ from the controls. In conclusion, lipopolysaccharide-induced pulmonary arterial hypertension does not aggravate the RM-induced significant but short-lasting decreases in systemic, regional, and organ blood flows.
-
Immature myeloid cells have been implicated as a source of postburn inflammation, and the appearance of these cells correlates with enhanced upregulation of hematopoiesis. The role of proliferative cells in postburn immune changes has not been directly tested. Gemcitabine, a ribonucleotide reductase inhibitor, has been shown to deplete proliferative immature myeloid cells in tumor models while sparing mature cells, leading to restored lymphocyte function and tumor regression. ⋯ Treatment of burn mice with gemcitabine ameliorated burn-induced susceptibility to LPS and infiltration of polymorphonuclear leukocytes into the liver and lung. Finally, gemcitabine treatment blocked the protective effect of burn injury upon P. aeruginosa infection. Our report shows that proliferative cells are major drivers of postburn immune changes and provides evidence that implicates immature myeloid cells in these processes.
-
There is substantial evidence that gut barrier failure is associated with distant organ injury and systemic inflammation. After major trauma or stress, the factors and mechanisms involved in gut injury are unknown. Our primary hypothesis is that loss of the intestinal mucus layer will result in injury of the normal gut that is exacerbated by the presence of luminal pancreatic proteases. ⋯ Because comparable levels of gut injury caused by systemic insults are associated with gut-induced lung injury, which is mediated by biologically active factors in mesenteric lymph, we next tested whether this local model of gut injury would produce active mesenteric lymph or lead to lung injury. It did not, suggesting that gut injury by itself may not be sufficient to induce distant organ dysfunction. Therefore, loss of the intestinal mucus layer, especially in the presence of intraluminal pancreatic proteases, is sufficient to lead to injury and barrier dysfunction of the otherwise normal intestine but not to produce gut-induced distant organ dysfunction.
-
With more than half of the world population infected, Helicobacter infection is an important public health issue associated with gastrointestinal cancers and inflammatory bowel disease. Animal studies indicate that complement and oxidative stress play a role in Helicobacter infections. Hemorrhage (HS) induces tissue damage that is attenuated by blockade of either complement activation or oxidative stress products. ⋯ The HS-induced macrophage infiltration correlated with increased secretion of tumor necrosis factor-α and nitric oxide in the infected mice. Together, these data indicate that Helicobacter infection modulates the mechanism of HS-induced intestinal damage and inflammation from a complement-mediated response to a macrophage response with elevated tumor necrosis factor-α and nitric oxide. These data indicate that chronic low-level infections change the response to trauma and should be considered when designing and administering therapeutics.