Shock : molecular, cellular, and systemic pathobiological aspects and therapeutic approaches : the official journal the Shock Society, the European Shock Society, the Brazilian Shock Society, the International Federation of Shock Societies
-
Microcirculatory dysfunction plays a pivotal role in the pathogenesis of severe sepsis and septic shock; hence, microcirculation blood flow monitoring has gained increasing attention. However, microcirculatory imaging is still investigational in human sepsis and has not yet been incorporated into routine clinical practice for several reasons, including the difficult interpretation of microcirculation imaging data, difficulty to draw a parallel between sublingual microcirculation imaging and organ microcirculation dysfunction, as well as the absence of microvessel dysfunction parameters defining sequential microcirculatory changes from the early to late stages of the disease, which could aid in the context of therapeutic approaches and of prognostic parameters. The purpose of this review was to bridge the experimental abdominal organ microvascular derangement kinetics and clinical aspects of microcirculatory findings in the early phase of severe sepsis/septic shock.
-
Sepsis develops when the initial host response is unable to contain the primary infection, resulting in widespread inflammation and multiple organ dysfunction. The impairment of neutrophil migration into the infection site, also termed neutrophil paralysis, is a critical hallmark of sepsis, which is directly related to the severity of the disease. Although the precise mechanism of this phenomenon is not fully understood, there has been much advancement in the understanding of this field. In this review, we highlight the recent insights into the molecular mechanisms of neutrophil paralysis during sepsis.
-
Comparative Study
Effects of tramadol and buprenorphine on select immunologic factors in a cecal ligation and puncture model.
Sepsis research relies on animal models. The models that most closely resemble clinical disease, such as cecal ligation and puncture, require surgery. After surgery, analgesics may not be included in experimental protocols because of concern over effects on inflammatory responses. ⋯ Again,differences were observed between the treatments. The results suggest that judicious and limited use of some analgesics may not dramatically affect the outcome of similarly conducted cecal ligation and puncture studies when compared with those not using analgesics. However, when different analgesics are used, comparisons between studies may be complicated.
-
Comparative Study
Effects of a selective iNOS inhibitor versus norepinephrine in the treatment of septic shock.
Inhibition of NOS is not beneficial in septic shock; selective inhibition of the inducible form (iNOS) may represent a better option. We compared the effects of the selective iNOS inhibitor BYK191023 with those of norepinephrine (NE) in a sheep model of septic shock. Twenty-four anesthetized, mechanically ventilated ewes received 1.5 g/kg body weight of feces into the abdominal cavity to induce sepsis. ⋯ Survival times were similar in the three groups. In this model of peritonitis, selective iNOS inhibition had more beneficial effects than NE on pulmonary artery pressures, gas exchange, mesenteric blood flow, microcirculation, and lactate concentration. Combination of this selective iNOS inhibitor with NE allowed a higher arterial pressure and renal blood flow to be maintained.
-
Acute kidney injury (AKI) is an important clinical syndrome characterized by abnormalities in the hydroelectrolytic balance. Because of high rates of morbidity and mortality (from 15% to 60%) associated with AKI, the study of its pathophysiology is critical in searching for clinical targets and therapeutic strategies. Severe sepsis is the major cause of AKI. ⋯ TLRs' signaling primes the cells for a robust inflammatory response dependent on NLRs; the interaction of TLRs and NLRs gives rise to the multiprotein complex known as the inflammasome, which in turn activates secretion of mature interleukin 1[beta] and interleukin 18. Experimental data show that innate immune receptors, the inflammasome components, and proinflammatory cytokines play crucial roles not only in sepsis, but also in organ-induced dysfunction, especially in the kidneys. In this review, we discuss the significance of the innate immune receptors in the development of acute renal injury secondary to sepsis.