Shock : molecular, cellular, and systemic pathobiological aspects and therapeutic approaches : the official journal the Shock Society, the European Shock Society, the Brazilian Shock Society, the International Federation of Shock Societies
-
Multicenter Study
Daily variation in endotoxin levels is associated with increased organ failure in critically ill patients.
High blood levels of endotoxin on admission to the intensive care unit are predictive of adverse outcomes, including organ failure and death. However, the significance of changes in endotoxin levels over time has not been evaluated. We examined whether dynamic daily changes in endotoxin levels resulted in the development of greater organ dysfunction over time in critically ill patients. ⋯ Endotoxin activity assay variability was found to be independent of infection status (P = 0.52). Daily dynamic variation in endotoxin levels is a marker of increased severity of illness as measured by burden of total organ dysfunction over time. Further studies are warranted to assess the role of daily variation in endotoxin levels in the pathogenesis and potential therapy of organ failure in the critically ill.
-
Comparative Study
Continuous versus bolus infusion of terlipressin in ovine endotoxemia.
In patients with sepsis, hemodynamic support is often complicated by a tachyphylaxis against conventional vasopressor agents. Bolus infusion of terlipressin, a vasopressin analog, has been reported to increase mean arterial pressure in patients with catecholamine-resistant septic shock. However, bolus infusion of terlipressin may be associated with severe side effects, including pulmonary vasoconstriction and impairment of oxygen delivery. ⋯ These unwanted side effects were prevented by continuous low-dose infusion of the drug. In conclusion, continuous infusion of terlipressin stabilized hemodynamics and improved myocardial performance in endotoxemic ewes without obvious side effects. Continuous low-dose terlipressin infusion may represent a useful alternative treatment of arterial hypotension related to sepsis and systemic inflammatory response syndrome.
-
Severe sepsis and septic shock are major causes of morbidity and mortality among children in pediatric intensive care units (PICUs) worldwide. Activated protein C (PC) is a critical endogenous regulator of coagulation and inflammation in patients with sepsis. However, the role of PC in pediatric sepsis is still obscure. ⋯ Also, there was no correlation between plasma PC activity and D-dimer levels (r = -0.07; P = 0.6). Importantly, the odds of dying were significantly higher in patients whose level of PC activity was less than 25% (odds ratio = 5.6; P = 0.02). Pediatric patients with septic shock demonstrate very low levels of PC activity, and this may be associated with an increased risk of death.
-
Shock and poor regional perfusion are common in asphyxiated neonates. We compared the systemic and regional hemodynamic effects of high-dose epinephrine (E) with those of dopamine combined with low-dose epinephrine (DE) infusions in a neonatal model of hypoxia-reoxygenation. Neonatal piglets (1-3 days, 1.5-2.5 kg) were acutely instrumented to continuously monitor systemic arterial pressure (SAP), pulmonary artery pressure, cardiac index (CI), and blood flows at the left common carotid, superior mesenteric, and renal arteries. ⋯ There were no differences in regional blood flows and oxygen delivery between groups. After hyperlactatemia with hypoxia, plasma lactate levels decreased with no difference between groups. Epinephrine given as the sole agent is as effective as dopamine and low-dose epinephrine combined in treating shock and hypotension that follow the resuscitation of hypoxic neonatal piglets, with no reduction in regional perfusion.
-
Neonatal asphyxia may lead to cardiac and renal complications perhaps mediated by oxygen free radicals. Using a model of neonatal hypoxia-reoxygenation, we tested the hypothesis that N-acetylcysteine (NAC) would improve cardiac function and renal blood flow. Eighteen piglets (aged 1-4 days old, weighing 1.4-2.2 kg) were anesthetized and acutely instrumented for continuous monitoring of pulmonary and renal artery flow (cardiac index [CI] and renal artery flow index [RAFI], respectively) and mean blood pressure. ⋯ There were no significant differences in heart rate, pulmonary artery pressure, systemic oxygen uptake, and tissue lipid hydroperoxide levels between groups. No histologic injury was found in the heart or kidney. In this porcine model of neonatal hypoxia and 100% reoxygenation, NAC improved cardiac function and renal perfusion, with improved tissue glutathione content.