Shock : molecular, cellular, and systemic pathobiological aspects and therapeutic approaches : the official journal the Shock Society, the European Shock Society, the Brazilian Shock Society, the International Federation of Shock Societies
-
Mesenteric hypoperfusion due to circulatory shock is a key event in the pathogenesis of subsequent distant organ injury. Postshock mesenteric lymph (PSML) has been shown to contain proinflammatory mediators elaborated from the ischemic gut. We hypothesize that the relative bioactivity of PSML depends on the depth and duration of circulatory shock. ⋯ Maximal PSML bioactivity, as measured by PMN priming for the respiratory burst, occurred during the third postshock hour, which correlated with peak lymph flow rate. PSML bioactivity was greatest with 30 mm Hg x 45 min, followed by 30 mm Hg x 15 min, 45 mm Hg x 45 min, and 45 mm Hg x 15 min. Hemorrhagic shock provokes the release of bioactive agents in PSML that is dependent on both depth and duration of shock.
-
In this study, experiments were designed to determine if peroxisome proliferator-activated receptor (PPAR) alpha agonists could decrease myocardial ischemia/reperfusion injury after cardioplegia-induced cardiac arrest under cardiopulmonary bypass, attenuate the appearance of cardiomyocytic apoptosis, and decrease the damage of reactive oxygen species. Cardiomyocytic apoptosis occurs after cardiopulmonary bypass surgery. Reactive oxygen species and peroxynitrite generated during ischemia/reperfusion initiate the formation of single-strand DNA breaks. ⋯ The occurrence of cardiomyocytic apoptosis and elevation of plasma cytokines were significantly lower in the group receiving PPAR-alpha agonists than in the other groups. Western blot analysis of apoptosis-inducing factor and cytochrome c revealed similar patterns. PPAR-alpha activation could diminish postischemic cardiomyocytic apoptosis and reactive oxygen species injuries after global cardiac arrest under cardiopulmonary bypass, possibly via prevention of both caspase-dependent and caspase-independent apoptotic pathways.
-
Production of oxygen radicals is required for both microbicidal and tissue-toxic effector functions of granulocytes. Inasmuch as an ambivalent role of polymorphonuclear leukocytes (PMNs) may become apparent during sepsis, we studied levels of hydrogen peroxide (H2O2) production by PMNs depending upon the nature of different particulate and soluble stimuli in patients with increasing sepsis severity. Patients with sepsis (n = 15), severe sepsis (n = 12), or septic shock (n = 33) were prospectively enrolled in the study. ⋯ Specifically, phagocytosis of zymosan and the associated H2O2 production were significantly decreased whereas spontaneous and stimulated H2O2 production elicited by soluble stimuli strongly increased. Thus, these findings suggest the development of a PMN dysfunction syndrome in patients with increasing sepsis severity. Moreover, as binding of zymosan particles to the PMNs' surface remained unchanged despite increasingly suppressed phagocytosis and associated H2O2 production, observed effects are likely to reflect defects in signaling by the lectin-binding site of CD11b and/or the beta-glucan receptor dectin-1, respectively.
-
Hypertonic saline solutions improve cerebral blood flow (CBF) when used for acute resuscitation from hemorrhagic hypotension accompanying some models of traumatic brain injury (TBI); however, the duration of increased CBF is brief. Because the nitric oxide synthase substrate l-arginine provides prolonged improvement in CBF after TBI, we investigated whether a hypertonic resuscitation fluid containing l-arginine would improve CBF in comparison to hypertonic saline without l-arginine in a model of moderate, paramedian, fluid-percussion TBI followed immediately by hemorrhagic hypotension (mean arterial pressure [MAP] = 60 mm Hg for 45 min). Sprague-Dawley rats were anesthetized with 4.0% isoflurane, intubated and ventilated with 1.5%-2.0% isoflurane in oxygen/air (50:50). ⋯ CBF increased similarly in all groups during infusion and then decreased similarly in all groups. At 120 min after infusion, CBF was highest in the group infused with hypertonic saline, but the difference was not significant. We conclude that the improvement of MAP, ICP, and CBF produced by hypertonic saline alone after TBI and hemorrhagic hypotension is not significantly enhanced by the addition of L-arginine at these doses.
-
The objective of this study was to evaluate the negative regulatory role of heat shock protein 70 (HSP70) on endotoxin-induced activation of inflammatory cytokine signaling pathways in a macrophage cell line. Our studies show that elevation of HSP70 either by activation of the heat shock response (HSR) or through forced expression of the hsp70.1 gene downregulates cytokine expression. Our experiments showed that activation of the HSR and HSP70 overexpression could inhibit LPS-mediated expression of the proinflammatory cytokines TNF-alpha and IL-1 at the mRNA and protein levels. ⋯ Overexpression of HSP70 inhibited the nuclear translocation of p65, the transcriptionally active component of the NF-kappaB complex, and prevented the degradation of IkappaBalpha, the regulator of NF-kappaB activity. However, HSP70 elevation did not markedly inhibit signaling through the MAPK arm of the LPS-induced pathway, suggesting that the effects of HSP70 are mediated primarily through the NF-kappaB cascade. Our experiments therefore suggested that elevated levels of HSP70 inhibit LPS-induced production of inflammatory cytokines by a mechanisms involving inactivation of NF-kappaB but cast doubt on significant role for the MAPK pathway in these effects.