Shock : molecular, cellular, and systemic pathobiological aspects and therapeutic approaches : the official journal the Shock Society, the European Shock Society, the Brazilian Shock Society, the International Federation of Shock Societies
-
Sepsis after a major hepatectomy is a critical problem. In septic shock, the inflammatory mediator, nitric oxide (NO), is overproduced in hepatocytes and macrophages. The natural antisense (AS) transcripts, non-coding RNAs, are transcribed from a gene that encodes inducible nitric oxide synthase (iNOS). iNOS AS transcripts interact with and stabilize iNOS mRNAs. ⋯ The combined treatment decreased mRNA expression of the inflammatory and pro-apoptotic genes while increasing that of the anti-apoptotic gene. Furthermore, the combined treatment reduced the number of myeloperoxidase-positive cells. These results suggested that the combination of SO1 and rTM has therapeutic potential for sepsis.
-
Background: The implication of circular RNAs (circRNAs) in sepsis-related complications arouses much attention, which provides additional treatment options for sepsis-related complications. The purpose of this study is to unveil the function and functional mechanism of circ_0001818 in cell models of septic acute kidney injury (AKI). Methods: Septic AKI cell models were constructed using HK2 cells treated with lipopolysaccharide (LPS). ⋯ Overexpression of TXNIP overturned the effects of circ_0001818 downregulation. Moreover, circ_0001818, miR-136-5p, and TXNIP in serumal exosomes had diagnostic values. Conclusions: Circ_0001818 targets miR-136-5p to activate TXNIP expression, leading to the contribution of LPS-induced HK2 cell injury.
-
Observational Study
Development of score system based on point-of-care ultrasound to predict vasopressor requirement for emergency patients with cardiopulmonary symptoms.
Objectives : Patients with cardiopulmonary symptoms admitted to the emergency department (ED) have high mortality and intensive care unit admission rates. We developed a new scoring system comprising concise triage information, point-of-care ultrasound, and lactate levels to predict vasopressor requirements. Methods : This retrospective observational study was conducted at a tertiary academic hospital. ⋯ The scoring system was developed based on the β coefficients of each component: accuracy, 0.8079; sensitivity, 0.8057; specificity, 0.8214; PPV, 0.9658; and NPV, 0.4035, with a cutoff value according to the Youden index. Conclusions : A new scoring system was developed to predict vasopressor requirements in adult ED patients with cardiopulmonary symptoms. This system can serve as a decision-support tool to guide efficient assignment of emergency medical resources.
-
Background : Accurate prediction of fluid responsiveness is important for postoperative critically ill elderly patients. The objective of this study was to evaluate the predictive values of peak velocity variation (ΔVpeak) and passive leg raising (PLR)-induced changes in ΔVpeak (ΔVpeak PLR ) of the left ventricular outflow tract to predict fluid responsiveness in postoperative critically ill elderly patients. Method : Seventy-two postoperative elderly patients with acute circulatory failure who were mechanically ventilated with sinus rhythm were enrolled in our study. ⋯ Results : Thirty-two patients were fluid responders. The area under the receiver operating characteristic curves (AUC) for baseline PPV and ΔVpeak to predict fluid responsiveness was 0.768 (95% confidence interval [CI], 0.653-0.859; P < 0.001) and 0.899 (95% CI, 0.805-0.958; P < 0.001) with gray zones of 7.63% to 12.66% that included 41 patients (56.9%) and 9.92% to 13.46% that included 28 patients (38.9%). ΔPPV PLR predicted fluid responsiveness with an AUC of 0.909 (95% CI, 0.818-0.964; P < 0.001), and the gray zone was 1.49% to 2.93% and included 20 patients (27.8%). ΔVpeak PLR predicted fluid responsiveness with an AUC of 0.944 (95% CI, 0.863-0.984; P < 0.001), and the gray zone was 1.48% to 2.46% and included six patients (8.3%). Conclusions : Passive leg raising-induced changes in peak velocity variation of blood flow in the left ventricular outflow tract accurately predicted fluid responsiveness with a small gray zone in postoperative critically ill elderly patients.