Shock : molecular, cellular, and systemic pathobiological aspects and therapeutic approaches : the official journal the Shock Society, the European Shock Society, the Brazilian Shock Society, the International Federation of Shock Societies
-
Fluid overload (FO) in critically ill children correlates with higher morbidity and mortality rates. Continuous renal replacement therapy (CRRT) is commonly employed to manage FO. In adults, both FO and CRRT adversely affect myocardial function. It remains unclear if children experience similar cardiovascular effects. ⋯ FO affects the hemodynamic profile of children on CRRT, with those having FO >15% showing higher SVRI and lower CI, despite HR and MAP remaining unchanged. Our study illustrates the feasibility and utility of electrocardiometry in these patients, suggesting future research employ this technology to further explore the hemodynamic effects of dialysis in children.
-
Unplanned intensive care unit (ICU) admissions are associated with increased morbidity and mortality. This study uses interpretable machine learning to predict unplanned ICU admissions for initial nonoperative trauma patients admitted to non-ICU locations. ⋯ Machine learning may outperform prior attempts at predicting the risk of unplanned ICU admissions in trauma patients while identifying unique predictors. Despite this progress, further research is needed to improve predictive performance by addressing class imbalance limitations.
-
Growing evidence has found the critical role of circular RNAs (circRNAs) in sepsis-induced acute kidney injury (S-AKI). CircTMCO3 has been found to be involved in tumor microenvironment changes of ovarian cancer. This study aimed to explore whether circTMCO3 functions in S-AKI, and if so, to elucidate the molecular mechanism. ⋯ CircTMCO3 protects against S-AKI by regulating miR-218-5p/ZEB2 axis, thereby mediating anti-apoptotic, antioxidant and anti-inflammatory activities. This indicates that increasing circTMCO3 expression might be a future therapeutic method for S-AKI.
-
Eugenol has been found to inhibit a variety of disease processes, including abdominal aortic aneurysm (AAA) formation. However, the specific role and the underlying molecular mechanism of Eugenol in AAA progression need to be further revealed. ⋯ Eugenol could slow down the development of AAA, which might be achieved by regulating STAT3/HMGB2 axis.