Shock : molecular, cellular, and systemic pathobiological aspects and therapeutic approaches : the official journal the Shock Society, the European Shock Society, the Brazilian Shock Society, the International Federation of Shock Societies
-
Acute respiratory distress syndrome (ARDS) is characterized by uncontrolled inflammation, which manifests as leukocyte infiltration and lung injury. However, the molecules that initiate this infiltration remain incompletely understood. We evaluated the effect of the nuclear alarmin IL-33 on lung damage and the immune response in LPS-induced lung injury. ⋯ We found that IL-33 promoted inflammation through NKT cells in ARDS. In summary, our results demonstrated that the IL-33/ST2 axis promotes the early uncontrolled inflammatory response in ARDS by activating and recruiting iNKT cells. Therefore, IL-33 and NKT cells may be therapeutic target molecules and immune cells, respectively, in early ARDS cytokine storms.
-
Introduction: Although the effects on hemodynamics of gasping during cardiac arrest (CA) have received a lot of attention, less is known about the respiratory mechanics and physiology of respiration in gasping. This study aimed to investigate the respiratory mechanics and neural respiratory drive of gasping during CA in a porcine model. Method: Pigs weighing 34.9 ± 5.7 kg were anesthetized intravenously. ⋯ The partial pressure of oxygen showed a continuous decline after VF to reach statistical significance in the 10th minute (9.46 ± 0.96 kPa, P < 0.001), whereas the partial pressure of carbon dioxide tended to first rise and then fall. Conclusions: Gasping during CA was characterized by high VT , extremely low frequency, and prolonged expiratory time, which may improve hypercapnia. During gasping, increased work of breathing and insufficient neuromechanical efficacy of neural respiratory drive suggested the necessity of MV and appropriate management strategies for MV during resuscitation after CA.
-
Objectives: This study investigated the role and potential involvement of pulmonary vascular glycocalyx degradation in acute lung injury in rats with severe heatstroke (HS). Methods: Rats in an established HS model were exposed to a heated environment for 60 min in an incubator (temperature, 40°C ± 2°C; humidity, 65% ± 5%). Following pretreatment with heparanase III (HPSE III) or heparin, pathological lung injury, arterial blood gas, alveolar barrier disruption, and hemodynamic changes were evaluated. ⋯ Moreover, TNF-α and IL-6 were overexpressed following heat stress. Furthermore, apoptosis of pulmonary tissues and the concentration of malondialdehyde in rat lungs increased in the HS and HPSE groups. Conclusions : Heatstroke induced pulmonary glycocalyx degradation, which increased vascular permeability and aggravated vascular endothelial dysfunction, contributing to apoptosis, inflammation, and oxidation in the pulmonary tissues.
-
Objective: The aim of the study is to evaluate the efficacy and safety of using angiotensin II (Ang2) as primary vasopressor for vasodilatory hypotension. Methods: This was a prospective observational study of critically ill adults admitted to an academic intensive care unit (ICU) with vasodilatory hypotension. We treated 40 patients with Ang2 as primary vasopressor and compared them with 80 matched controls who received conventional vasopressors (norepinephrine, vasopressin, metaraminol, epinephrine, or combinations). ⋯ The incidence of thromboembolic complications was similar. Conclusions: Primary Ang2 administration in vasodilatory hypotension did not seem harmful compared with conventional vasopressors. Although Ang2 did not decrease peak serum creatinine levels or major adverse kidney events, its effects on intensive care unit survival, serum troponin, and renal function in patients on renin angiotensin aldosterone system inhibitors warrant further exploration in randomized trials (ACTRN12621000281897).
-
Introduction: Sepsis is a dysregulated host response to infection that can lead to life-threatening organ dysfunction. Clinical and animal studies consistently demonstrate that female subjects are less susceptible to the adverse effects of sepsis, demonstrating the importance of understanding how sex influences sepsis outcomes. The signal transducer and activator of transcription 3 (STAT3) pathway are a major signaling pathway that facilitates inflammation during sepsis. ⋯ Conclusions: Our study demonstrates that sex influences white adipose tissue STAT3 activation and morphology during sepsis, which is not dependent on the presence of functional STAT3 in mature adipocytes. Furthermore, genetic inhibition of adipocyte STAT3 activation in male, but not female mice, results in reduced lung neutrophil infiltration and lung injury during sepsis. The results from our study demonstrate the importance of considering biological sex and the white adipose tissue as potential sources and targets of inflammation during sepsis.