Shock : molecular, cellular, and systemic pathobiological aspects and therapeutic approaches : the official journal the Shock Society, the European Shock Society, the Brazilian Shock Society, the International Federation of Shock Societies
-
In preclinical studies, the protective effects of female sex hormones and the immunosuppressive effects of male sex hormones were demonstrated. However, gender-related differences in multiorgan failure and mortality in clinical trials have not been consistently explained. This study aims to investigate gender-related differences in the development and progression of sepsis using a clinically relevant ovine model of sepsis. ⋯ Similar changes in hematocrit, urine output, and fluid balance were observed between females and males. The present data indicate that the onset of multiple organ failure and progression of sepsis is faster in male sheep than in female sheep, even though the severity of cardiopulmonary function is comparable over time. Further studies are warranted to validate the above results.
-
While fluid resuscitation is fundamental in the treatment of sepsis-induced tissue hypoperfusion, a sustained positive fluid balance is associated with excess mortality. Hyaluronan, an endogenous glycosaminoglycan with high affinity to water, has not been tested previously as adjuvant to fluid resuscitation in sepsis. In a prospective, parallel-grouped, blinded model of porcine peritonitis sepsis, we randomized animals to intervention with adjuvant hyaluronan (add-on to standard therapy, n = 8) or 0.9% saline (n = 8). ⋯ Plasma IL-6 increased to 2,450 (1,420-6,890) pg/mL and 3,690 (1,410-11,960) pg/mL (18 hours of resuscitation) in the intervention and control groups (nonsignificant). The intervention counteracted the increase in proportion of fragmented hyaluronan associated with peritonitis sepsis (mean peak elution fraction [18 hours of resuscitation] intervention group: 16.8 ± 0.9 versus control group: 17.9 ± 0.6 [ P = 0.031]). In conclusion, hyaluronan did not reduce the volume needed for fluid resuscitation or decrease the inflammatory reaction, even though it counterbalanced the peritonitis-induced shift toward increased proportion of fragmented hyaluronan.
-
Purpose: This study is designed to explore the role and mechanism of circ_0099188 in LPS-engendered HPAEpiC cells. Methods: Circ_0099188, microRNA-1236-3p (miR-1236-3p), and high mobility group box 3 (HMGB3) levels were measured using real-time quantitative polymerase chain reaction. Cell viability and apoptosis were assessed using cell counting kit-8 (CCK-8) and flow cytometry assays. ⋯ Also, the downregulation of circ_0099188 might overturn LPS-triggered HPAEpiC cell proliferation, apoptosis, and inflammatory response. Mechanically, circ_0099188 is able to affect HMGB3 expression by sponging miR-1236-3p. Conclusion: Circ_0099188 knockdown might mitigate LPS-induced HPAEpiC cell injury by targeting the miR-1236-3p/HMGB3 axis, providing an underlying therapeutic strategy for pneumonia treatment.
-
Background: Infantile pneumonia is a respiratory infection disease, seriously threatening the life of neonatal patients. Circular RNA (circRNA) dysregulation is reported to be involved in pneumonia pathogenesis. Circ_0012535 was previously displayed to be upregulated in blood samples of patients with community-acquired pneumonia. ⋯ MiR-338-3p bound to IL6R 3'UTR, and circ_0012535 shared miR-338-3p binding site with IL6R. IL6R overexpression reversed the role of miR-338-3p, thereby recovering LPS-induced WI38 cell apoptosis and inflammation. Conclusion: Circ_0012535 supported LPS-induced WI38 cell apoptosis and inflammation to promote the progression of infantile pneumonia, and circ_0012535 functioned partly by targeting the miR-338-3p/IL6R signaling.
-
Pulmonary epithelial barrier injury contributes to acute lung injury, accelerating exudate formation, and resulting alveolar edema. Heme oxygenase-1 (HO-1) plays an important role in ameliorating the pathological symptoms of acute lung injury (ALI). Using an ALI mouse model induced by LPS inhalation, the present study explored the potential molecular regulatory effect of hemin (a potent HO-1 inducer) against ALI epithelial damage. ⋯ Furthermore, HO-1 elevation inhibited the activation of the nucleotide-binding domain-like receptor protein 3 (NLRP3) inflammasome and oxidative stress in alveolar epithelia, leading to the suppression of inflammatory responses and epithelial pyroptosis, as indicated by the decreased levels of NLRP3 and apoptosis-associated speck-like protein containing a CARD domain (ASC), repressed cleavage of caspase-1 and gasdermin D, and reduced expression levels of inflammatory cytokine IL-1β. In contrast, protoporphyrin IX zinc (II) (ZnPP, an HO-1 inhibitor) treatment had no protective effect on LPS inhalation-induced ALI in mice. In summary, HO-1 induction serves a critical role in maintaining airway epithelium homeostasis through the inhibition of NLRP3/ASC/caspase-1-mediated pyroptosis and inflammation in the occurrence of ALI.