Shock : molecular, cellular, and systemic pathobiological aspects and therapeutic approaches : the official journal the Shock Society, the European Shock Society, the Brazilian Shock Society, the International Federation of Shock Societies
-
Injuries lead to an early systemic inflammatory state with innate immune system activation. Neutrophil extracellular traps (NETs) are a complex of chromatin and proteins released from the activated neutrophils. Although initially described as a response to bacterial infections, NETs have also been identified in the sterile postinjury inflammatory state. ⋯ Neutrophil extracellular trap formation and PAD activation have been shown to contribute to the postinjury inflammatory state leading to a detrimental effect on organ systems. This review describes our current understanding of the role of PAD and NET formation following injury and burn. This is a new field of study, and the emerging data appear promising for the future development of targeted biomarkers and therapies in trauma.
-
Sepsis is a severe inflammatory disease syndrome caused by the dysregulated host response to infection. Neutrophils act as the first line of defense against pathogens by releasing effector molecules such as reactive oxygen species, myeloperoxidase, and neutrophil extracellular traps. However, uncontrolled activation of neutrophils and extensive release of effector molecules often cause a "friendly fire" to damage organ systems. ⋯ Damage-associated molecular patterns (DAMPs) are endogenous molecules to induce inflammation by stimulating pattern recognition receptors on immune cells. Different kinds of DAMPs have been shown to contribute to sepsis pathophysiology, including extracellular cold-inducible RNA-binding protein, high-mobility group box 1, extracellular histones, and heat shock proteins. In this review, we summarize the different subsets of neutrophils and their association with sepsis and discuss the novel roles of DAMPs on neutrophil heterogeneity.
-
There is growing appreciation that skeletal muscle is a fully functional component of the body's innate immune system with the potential to actively participate in the host response to invading bacteria as opposed to being a passive target. In this regard, skeletal muscle in general and myocytes specifically possess an afferent limb that recognizes a wide variety of host pathogens via their interaction with multiple classes of cell membrane-bound and intracellular receptors, including toll-like receptors, cytokine receptors, NOD-like receptors, and the NLRP inflammasome. ⋯ Moreover, because there are important differences, this review focuses specifically on systemic infection and inflammation as opposed to the response of muscle to direct injury and various types of muscular dystrophies. To date, however, there are few definitive muscle-specific studies that are necessary to directly address the relative importance of muscle-derived immune activation as a contributor to either the systemic immune response or the local immune microenvironment within muscle during sepsis and the resultant downstream metabolic disturbances.
-
Sepsis is a complex disease resulting from a dysregulated inflammatory response to an infection. Initiation of sepsis occurs from a localized infection that disseminates to the bloodstream placing all organ systems at risk. ⋯ Most importantly, the brain is hypoperfused creating an ischemic and inflammatory state resulting in the clinical observation of acute mental status changes and cognitive dysfunction commonly known as sepsis-associated encephalopathy. This short review describes the inflammatory molecular mechanisms of myocardial dysfunction, discusses the evidence of the dual roles of the microglia resulting in blood-brain barrier disruption, and suggests that septic-derived exosomes, endosome-derived lipid bilayer spheroids released from living cells, influence cardiac and neurological cellular function.
-
Observational Study
Diagnostic value of mitochondrial DNA and peripheral blood mononuclear cell respirometry for burn-related sepsis.
Background: Sepsis is the leading cause of mortality among burn patients that survive acute resuscitation. Clinical criteria have poor diagnostic value for burn-induced sepsis, making it difficult to diagnose. Protein biomarkers (e.g., procalcitonin) have been examined with limited success. ⋯ A subanalysis revealed a significant mortality difference in PBMC respirometry after sepsis diagnosis, wherein survivors had higher routine respiration ( P = 0.003) and maximal respiration ( P = 0.011) compared with nonsurvivors. Conclusion: Our findings reveal that mtDNA may have diagnostic value for burn sepsis, whereas PBMC respirometry is nonspecifically elevated in burns, but may have value in mortality prognosis. A larger, multisite study is warranted for further validity of the diagnostic value of mtDNA and PBMC respirometry as biomarkers for prognosis of sepsis and outcomes in burn patients.