American journal of respiratory and critical care medicine
-
Am. J. Respir. Crit. Care Med. · Dec 2012
Systemic steroid exposure is associated with differential methylation in chronic obstructive pulmonary disease.
Systemic glucocorticoids are used therapeutically to treat a variety of medical conditions. Epigenetic processes such as DNA methylation may reflect exposure to glucocorticoids and may be involved in mediating the responses and side effects associated with these medications. ⋯ Our analyses suggest that systemic steroid use is associated with site-specific differential methylation throughout the genome. Differentially methylated CpG sites were found in biologically plausible and previously unsuspected pathways; these genes and pathways may be relevant in the development of novel targeted therapies.
-
Am. J. Respir. Crit. Care Med. · Dec 2012
Severe sepsis in pre-hospital emergency care: analysis of incidence, care, and outcome.
Severe sepsis is common and highly morbid, yet the epidemiology of severe sepsis at the frontier of the health care system-pre-hospital emergency care-is unknown. ⋯ EMS personnel care for a substantial and increasing number of patients with severe sepsis, and spend considerable time on scene and during transport. Given the emphasis on rapid diagnosis and intervention for sepsis, the pre-hospital interval may represent an important opportunity for recognition and care of sepsis.
-
The exploration of the endogenous regenerative potential of the diseased adult human lung represents an innovative and exciting task. In this pulmonary perspective, we discuss three major components essential for endogenous lung repair and regeneration: epithelial progenitor populations, developmental signaling pathways that regulate their reparative and regenerative potential, and the surrounding extracellular matrix in the human diseased lung. Over the past years, several distinct epithelial progenitor populations have been discovered within the lung, all of which most likely respond to different injuries by varying degrees. ⋯ Third, endogenous progenitor cells and developmental signaling pathways act in close spatiotemporal synergy with the extracellular matrix. These three components define and refine the highly dynamic microenvironment of the lung, which is altered in a disease-specific fashion in several chronic lung diseases. The search for the right mixture to induce efficient and controlled repair and regeneration of the diseased lung is ongoing and will open completely novel avenues for the treatment of patients with chronic lung disease.