American journal of respiratory and critical care medicine
-
Am. J. Respir. Crit. Care Med. · Jun 2019
Long-Term Outcome After Prolonged Mechanical Ventilation: A Long-Term Acute-Care Hospital Study.
Rationale: Patients managed at a long-term acute-care hospital (LTACH) for weaning from prolonged mechanical ventilation are at risk for profound muscle weakness and disability. Objectives: To investigate effects of prolonged ventilation on survival, muscle function, and its impact on quality of life at 6 and 12 months after LTACH discharge. Methods: This was a prospective, longitudinal study conducted in 315 patients being weaned from prolonged ventilation at an LTACH. ⋯ Conclusions: Among patients receiving prolonged mechanical ventilation at an LTACH, 53.7% were detached from the ventilator at discharge and 1-year survival was 66.9%. Respiratory strength was well maintained, whereas peripheral strength was severely impaired throughout hospitalization. Six months after discharge, improvement in muscle function enabled patients to perform daily activities, and 84.7% indicated willingness to undergo mechanical ventilation again.
-
Am. J. Respir. Crit. Care Med. · Jun 2019
Single-Cell Transcriptomic Analysis of Human Lung Provides Insights into the Pathobiology of Pulmonary Fibrosis.
Rationale: The contributions of diverse cell populations in the human lung to pulmonary fibrosis pathogenesis are poorly understood. Single-cell RNA sequencing can reveal changes within individual cell populations during pulmonary fibrosis that are important for disease pathogenesis. Objectives: To determine whether single-cell RNA sequencing can reveal disease-related heterogeneity within alveolar macrophages, epithelial cells, or other cell types in lung tissue from subjects with pulmonary fibrosis compared with control subjects. ⋯ Conclusions: We generated a single-cell atlas of pulmonary fibrosis. Using this atlas, we demonstrated heterogeneity within alveolar macrophages and epithelial cells from subjects with pulmonary fibrosis. These results support the feasibility of discovery-based approaches using next-generation sequencing technologies to identify signaling pathways for targeting in the development of personalized therapies for patients with pulmonary fibrosis.
-
Am. J. Respir. Crit. Care Med. · Jun 2019
Spatiotemporal Variations in Ambient Ultrafine Particles and the Incidence of Childhood Asthma.
Rationale: Little is known regarding the impact of ambient ultrafine particles (UFPs; <0.1 μm) on childhood asthma development. Objectives: To examine the association between prenatal and early postnatal life exposure to UFPs and development of childhood asthma. Methods: A total of 160,641 singleton live births occurring in the City of Toronto, Canada between April 1, 2006, and March 31, 2012, were identified from a birth registry. ⋯ In models additionally adjusted for PM2.5 and nitrogen dioxide, UFPs exposure during the second trimester of pregnancy remained positively associated with childhood asthma incidence (hazard ratio per interquartile range increase, 1.05; 95% confidence interval, 1.01-1.09). Conclusions: This is the first study to evaluate the association between perinatal exposure to UFPs and the incidence of childhood asthma. Exposure to UFPs during a critical period of lung development was linked to the onset of asthma in children, independent of PM2.5 and NO2.
-
Am. J. Respir. Crit. Care Med. · Jun 2019
Omega-3 and Omega-6 Intake Modifies Asthma Severity and Response to Indoor Air Pollution in Children.
Rationale: Higher indoor particulate matter (PM) concentrations are linked with increased asthma morbidity. Dietary intake of fatty acids, also linked with asthma outcomes, may influence this relationship. Objectives: To determine the relationship between omega-3 and omega-6 fatty acid intake and pediatric asthma morbidity, and the association between fatty acid intake and strength of indoor, PM-related asthma symptoms, albuterol use, and systemic inflammation. ⋯ Measurements and Main Results: Higher omega-6 intake associated with increased odds of increased asthma severity (P = 0.02), and lower FEV1/FVC ratio (P = 0.01). Higher omega-3 intake associated with reduced effect of indoor PM ≤2.5 μm in aerodynamic diameter on symptoms (P < 0.01), whereas higher omega-6 intake associated with amplified effect of indoor PM ≤2.5 μm in aerodynamic diameter on symptoms and circulating neutrophil percentage (P < 0.01). Conclusions: Omega-3 and omega-6 intake are associated with pediatric asthma morbidity and may modify the asthmatic response to indoor PM.