American journal of respiratory and critical care medicine
-
Ahead of Print article withdrawn by publisher.
-
Ahead of Print article withdrawn by publisher.
-
Am. J. Respir. Crit. Care Med. · May 2022
Randomized Controlled TrialImpact of Exposure to Diesel Exhaust on Inflammation Markers and Proteases in Former Smokers with COPD: A Randomized, Double-Blinded, Crossover Study.
Rationale: There is growing evidence that chronic obstructive pulmonary disease (COPD) can be caused and exacerbated by air pollution exposure. Objectives: To document the impact of short-term air pollution exposure on inflammation markers, proteases, and antiproteases in the lower airways of older adults with and without COPD. Methods: Thirty participants (10 ex-smokers with mild to moderate COPD and 20 healthy participants [9 ex-smokers and 11 never-smokers]), with an average age of 60 years, completed this double-blinded, controlled, human crossover exposure study. ⋯ Circulating lymphocytes were increased after DE exposure (0.14 [95% CI, 0.05-0.24] cells × 109/L; P = 0.03), irrespective of COPD status. Conclusions: A controlled human crossover study of DE exposure reveals that former smokers with COPD may be susceptible to an inflammatory response compared with ex-smokers without COPD or never-smoking healthy control participants. Clinical trial registered with www.clinicaltrials.gov (NCT02236039).
-
Autoimmune pulmonary alveolar proteinosis (PAP) is a rare disease characterized by myeloid cell dysfunction, abnormal pulmonary surfactant accumulation, and innate immune deficiency. It has a prevalence of 7-10 per million; occurs in individuals of all races, geographic regions, sex, and socioeconomic status; and accounts for 90% of all patients with PAP syndrome. The most common presentation is dyspnea of insidious onset with or without cough, production of scant white and frothy sputum, and diffuse radiographic infiltrates in a previously healthy adult, but it can also occur in children as young as 3 years. ⋯ Pathogenesis is driven by GM-CSF (granulocyte/macrophage colony-stimulating factor) autoantibodies, which are present at high concentrations in blood and tissues and form the basis of an accurate, commercially available diagnostic blood test with sensitivity and specificity of 100%. Although whole-lung lavage remains the first-line therapy, inhaled GM-CSF is a promising pharmacotherapeutic approach demonstrated in well-controlled trials to be safe, well tolerated, and efficacious. Research has established GM-CSF as a pulmonary regulatory molecule critical to surfactant homeostasis, alveolar stability, lung function, and host defense.