American journal of respiratory and critical care medicine
-
Am. J. Respir. Crit. Care Med. · May 2023
Temperature Trajectory Subphenotypes in Oncology Patients with Neutropenia and Suspected Infection.
Rationale: Despite etiologic and severity heterogeneity in neutropenic sepsis, management is often uniform. Understanding host response clinical subphenotypes might inform treatment strategies for neutropenic sepsis. Objectives: In this retrospective two-hospital study, we analyzed whether temperature trajectory modeling could identify distinct, clinically relevant subphenotypes among oncology patients with neutropenia and suspected infection. ⋯ Bloodstream infections were more common among hyperthermic slow resolvers (n = 248 [21.8%]) and hyperthermic fast resolvers (n = 240 [18.3%]) than among hypothermic (n = 188 [11.7%]) or normothermic (n = 418 [11.5%]) encounters (P < 0.001). Adjusted for confounders, hyperthermic slow resolvers had increased adjusted odds for mortality (primary cohort odds ratio, 1.91 [P = 0.03]; validation cohort odds ratio, 2.19 [P < 0.001]) and bloodstream infection (primary odds ratio, 1.54 [P = 0.04]; validation cohort odds ratio, 2.15 [P < 0.001]). Conclusions: Temperature trajectory subphenotypes were independently associated with important outcomes among hospitalized patients with neutropenia in two independent cohorts.
-
Am. J. Respir. Crit. Care Med. · May 2023
ReviewDiaphragm Neurostimulation Assisted Ventilation in Critically Ill Patients.
Diaphragm neurostimulation consists of placing electrodes directly on or in proximity to the phrenic nerve(s) to elicit diaphragmatic contractions. Since its initial description in the 18th century, indications have shifted from cardiopulmonary resuscitation to long-term ventilatory support. Recently, the technical development of devices for temporary diaphragm neurostimulation has opened up the possibility of a new era for the management of mechanically ventilated patients. ⋯ Experimental evidence suggests diaphragm neurostimulation may prevent neuroinflammation associated with mechanical ventilation. This review describes the historical development and evolving approaches to diaphragm neurostimulation during mechanical ventilation and surveys the potential mechanisms of benefit. The review proposes a research agenda and offers perspectives for the future of diaphragm neurostimulation assisted mechanical ventilation for critically ill patients.