Medical engineering & physics
-
The objective of this study is to determine the three dimensional kinematics of the human pelvis including both sacroiliac joints following a simulated open book injury induced on cadavers by applying anterior-posterior compressive loads to the pelvis. An electromagnetic digitizing and motion tracking system was utilized to measure the morphology of the pelvis and the relative movements of its bones during this simulated open book fracture. The screw displacement axis method was used to describe the relative motion between the sacrum and each hipbone. ⋯ One can thus conclude that in open book pelvic injuries, the pubic bone on the side of injury displaces inferiorly on the outlet projection x-rays with no vertical displacement of the SIJ. This is important since the initial assessment of the open book injury in the emergency room includes outlet projection x-rays. From this study, the relative vertical positions of the pubic bones on these x-rays can help the surgeon in differentiating open book fracture injury from other pelvic injuries.
-
A three dimensional inertial sensing system for measuring foot movements during gait is proposed and tested. It can form the basis for an automated tuning system for a two-channel implantable drop-foot stimulator. The foot orientation and position during the swing phase of gait can be reconstructed on the basis of three-dimensional measurement of acceleration and angular velocity, using initial and final conditions during mid-stance. ⋯ This agrees with anatomical knowledge about the function of the muscles activated by both branches of the peroneal nerve. The inertial sensor method is expected to be useful for the clinical evaluation of foot movements during gait supported by the two-channel drop-foot stimulator. Furthermore, it is expected to be applicable for the automated balancing of the two stimulation channels to ensure optimal support of gait.
-
The goal of this work was to investigate the feasibility of ankle stiffness control using functional electrical stimulation (FES) while standing, as relevant to the development of feedback systems for balance control in paraplegia. The work was carried out using apparatus in which the subject stands with all joints above the ankles braced, and where ankle moment is provided via FES of the ankle flexor and extensor muscles. A feedback control strategy for ankle stiffness control is proposed in which the ankle moment is controlled to a reference value equal to the product of the desired stiffness and the measured ankle angle. ⋯ As a result, dorsiflexor stimulation readily saturates giving poor stiffness control. It was further observed that when the desired stiffness is higher more external force has to be applied to perturb the body away from the neutral (upright) position. We conclude that: (i) accurate ankle stiffness control, up to the fundamental strength limits of the muscles, can be achieved with controlled FES; (ii) ankle stiffness control using FES in paraplegia has the potential to ease the task of stabilising upright posture by application of additional upper-body forces.
-
A computational fluid dynamics study based on the application of the finite volume method has been performed to investigate the effects of the pulmonary afterload on the hemodynamics after the hemi-Fontan procedure. This operation is generally used as part of a series of staged procedures to treat complex congenital malformations of the heart. It consists of re-directing the superior vena caval flow from the right atrium into the pulmonary arteries, by-passing the right ventricle while excluding the inferior caval flow from the lungs. ⋯ In this paper the adopted methodology is presented, together with some of the preliminary results. The model has been used to simulate the local fluid dynamics for different values of the pulmonary arteriolar resistance and lung resistances, allowing a quantitative evaluation of the dissipated energy and the flow distribution into the lungs. The results show that both flow distribution into the lungs and energy dissipation after the hemi-Fontan procedure are only minimally affected by the pulmonary arteriolar resistance.
-
Cervical spinal instability due to ligamentous injury, degenerated disc and facetectomy is a subject of great controversy. There is no analytical investigation reported on the biomechanical response of cervical spine in these respects. Parametric study on the roles of ligaments, facets, and disc nucleus of human lower cervical spine (C4-C6) was conducted for the very first time using noninvasive finite element method. ⋯ The passive FE model predicted the nonlinear force displacement response of the human cervical spine, with increasing stiffness at higher loads. It also predicted that ligaments, facets or disc nucleus are crucial to maintain the cervical spine stability, in terms of sagittal rotational movement or redistribution of load. FE method of analysis is an invaluable application that can supplement experimental research in understanding the clinical biomechanics of the human cervical spine.