Medical engineering & physics
-
Endotracheal intubation is a complex medical procedure in which a ventilating tube is inserted into the human trachea. Improper positioning carries potentially fatal consequences and therefore confirmation of correct positioning is mandatory. This paper introduces a novel system for endotracheal tube position confirmation. ⋯ The results, obtained using a leave-one-case-out method, show that the system correctly classified 1530 out of 1600 (95.6%) of the cow intubations images, and 351 out of the 358 human images (98.0%). Misclassification of an image of the esophagus as carina or upper-trachea, which is potentially fatal, was extremely rare (only one case when in the animal dataset and no cases when in the human intubation dataset). The classification results of the cow intubations dataset compare favorably with a state-of-the-art classification method tested on the same dataset.
-
Preclinical models of spinal metastases allow for the application of micro-image based structural assessments, however, large data sets resulting from high resolution scanning motivate a need for robust automated analysis tools. Accurate assessment of changes in vertebral architecture, however, may depend both on the resolution of images acquired and the models used to represent the structural data. ⋯ Differences in microstructural parameters generated through automated analysis at high resolution suggest that diffuse MT1 osteolytic destruction in whole rat vertebrae results primarily in loss of trabeculae in the metastatic vertebrae, as opposed to trabecular thinning. The sensitivity of the bony architectural parameters to resolution motivates the need for high resolution scanning or post-processing of images.
-
Comparative Study
Comparison of pulse rate variability with heart rate variability during obstructive sleep apnea.
We investigate whether pulse rate variability (PRV) extracted from finger photo-plethysmography (Pleth) waveforms can be the substitute of heart rate variability (HRV) from RR intervals of ECG signals during obstructive sleep apnea (OSA). Simultaneous measurements (ECG and Pleth) were taken from 29 healthy subjects during normal (undisturbed sleep) breathing and 22 patients with OSA during OSA events. Highly significant (p<0.01) correlations (1.0>r>0.95) were found between heart rate (HR) and pulse rate (PR). ⋯ Results suggest that both HRV and PRV indices could be used to distinguish OSA events from normal breathing during sleep. However, several variability measures (SDNN, RMSSD, HF power, LF/HF and sample entropy) of PR and HR were found to be significantly (p<0.01) different during OSA events. Therefore, we conclude that PRV provides accurate inter-pulse variability to measure heart rate variability under normal breathing in sleep but does not precisely reflect HRV in sleep disordered breathing.
-
Comparative Study
Experimental investigations of forces and torque in conventional and ultrasonically-assisted drilling of cortical bone.
Bone drilling is widely used in orthopaedics and surgery; it is a technically demanding surgical procedure. Recent technological improvements in this area are focused on efforts to reduce forces in bone drilling. This study focuses on forces and a torque required for conventional and ultrasonically-assisted tool penetration into fresh bovine cortical bone. ⋯ Ultrasonically-assisted drilling (UAD) was found to reduce a drilling thrust force and torque compared to conventional drilling (CD). The mechanism behind lower levels of forces and torque was explored, using high-speed filming of a drill-bone interaction zone, and was linked to the chip shape and character of its formation. It is expected that UAD will produce holes with minimal effort and avoid unnecessary damage and accompanying pain during the incision.
-
This study aimed at developing a method for automated electrocardiography (ECG) artifact detection and removal from trunk electromyography signals. Independent Component Analysis (ICA) method was applied to the simulated data set of ECG-corrupted surface electromyography (SEMG) signals. Independent Components (ICs) correspond to ECG artifact were then identified by an automated detection algorithm and subsequently removed. ⋯ Better performance indicated by a significantly higher correlation coefficient (p<0.001) with the original EMG recordings was found in the SEMG data cleaned by the ICA-based method, than that by BW HPF 30. The automated ECG-artifact removal method for trunk SEMG recordings proposed in this study was demonstrated to produce a very good detection rate and preserved essential EMG components while keeping its distortion to minimum. The automatic nature of our method has solved the problem of visual inspection by standard ICA methods and brings great clinical benefits.