Oncology reports
-
The ability to achieve pathologic downstaging after neoadjuvant chemoradiotherapy (NCRT) is correlated with improved survival in locally advanced rectal cancer (LARC). However, there is no effective predictive markers. In this study, the expression of angiogenic markers was evaluated in pre-treatment biopsies and corresponding post-treatment resection specimens, and were correlated to histopathological tumour characteristics and response. ⋯ Moreover, upregulated expression of SDF-1α (P=0.016) and positive PlGF staining (P=0.001) after NCRT were significantly associated with resistance to NCRT. On multivariate analysis, positive PlGF staining after NCRT was found to be independently associated with resistance to NCRT (P=0.013). Our data suggest that SDF-1α and PlGF should be evaluated as new targets for NCRT in LARC.
-
Complement-dependent cytotoxicity (CDC) is an important antitumor mechanism of monoclonal antibodies (mAbs). However, trastuzumab, an anti-HER2 mAb, exerts only minor CDC. Overexpression of membrane-bound complement regulatory proteins (mCRPs), which suppress CDC, have been implicated in various malignant tumors. ⋯ After pretreatment of tamoxifen, trastuzumab-induced cytolysis was enhanced through CD55 downregulation. In conclusion, CD55 overexpression is an independent risk factor for recurrence in breast cancer patients receiving postoperative adjuvant therapy containing trastuzumab. Combined use of tamoxifen and trastuzumab for HER2-positive breast cancer treatment may enhance the antitumor effects of trastuzumab by elevated CDC, which warrants further study.
-
Diffuse large B-cell lymphoma (DLBCL) is the most common type of non-Hodgkin's lymphoma worldwide. Although patient outcomes have significantly improved to a greater than 40% cure rate by the combinatorial cyclophosphamide, doxorubicin, vincristine and prednisone (CHOP) chemotherapy, which is widely used, resistance to the CHOP regimen continues to pose a problem in managing or curing DLBCL. While it promotes the malignancy and chemo-resistance in certain types of cancer, Annexin A5 is negatively correlated with those in other cancers, including DLBCL. ⋯ Overexpression of Annexin A5 in both cell lines significantly decreased cell invasion, matrix metalloproteinase-9 (MMP-9) expression/activity, phosphatidylinositol 3-kinase (PI3K) activity/Akt phosphorylation, and cell survival against CHOP-induced apoptosis. On the other hand, knockdown of Annexin A5 markedly increased cell invasion, MMP-9 expression/activity, PI3K activity/Akt phosphorylation, and CHOP-induced apoptosis in the DLBCL cell lines, which was abolished by selective PI3K inhibitor BKM120. In conclusion, our study provides the first in vitro evidence that Annexin A5 inhibits DLBCL cell invasion, MMP-9 expression/activity, and chemoresistance to CHOP through a PI3K-dependent mechanism; it provides new insight not only into the biological function of Annexin A5, but also into the molecular mechanisms underlying DLBCL progression and chemoresistance.
-
Anaphylatoxin C5a indirectly fosters cancer cells through recruitment of myeloid-derived suppressor cells (MDS) for inhibiting antitumor CD8+ T cells and induction of neovascularization. We recently found activation of cancer cells by C5a directly via the C5a-receptor (C5aR; CD88) to enhance invasiveness. Thus, C5a possibly contributes to cancer progression rather than elimination. ⋯ These results indicated C5a release from C5 by a cancer cell membrane-bound serine protease that can cleave peptide bonds at the carboxy-terminal site of paired basic amino acid residues. Cancer cell C5a release from the complement-immobilized plasma supported feasibility of this cancer cell protease-dependent C5a generation in cancer tissues. The new mechanism of C5a generation suggests self-activation of C5aR-expressing cancer cells to enhance invasiveness and induction of MDS recruitment and neovascularization to create a microenvironment favorable for cancer progression.
-
In the present study, we evaluated the role of phosphatidylinositol-3 OH kinase/protein kinase B (PI3K/Akt) signaling on changes to epithelial-to-mesenchymal reverting transition (EMrT) in nasopharyngeal carcinoma (NPC). Protein expression levels of p-Akt (Ser473), and the epithelial‑to-mesenchymal transition (EMT) markers E-cadherin, vimentin, α smooth muscle actin (α-SMA), were examined in clinical samples from 130 cases of undifferentiated non-keratinizing NPC, and 20 cases of benign nasopharyngitis. The relationship between protein expression levels and the statue of NPC lymph node metastasis was analyzed. ⋯ Treating CNE2Z cells with LY294002 inhibited p-Akt (Ser473), vimentin and α-SMA expression but upregulated E-cadherin expression, leading to significantly attenuated cell invasion and migration. Administration of mice with LY294002 resulted in upregulation of membrane E-cadherin, and downregulation of vimentin and α-SMA in CNE2Z xenografts, with reduced pulmonary metastasis. Our findings suggest that inhibiting the PI3K/Akt pathway using LY294002 attenuated NPC metastasis via induction of EMrT.