Medicina
-
Sophisticated screening protocols for genetic abnormalities constitute an important component of current prenatal care, aiming to identify high-risk pregnancies and offer appropriate counseling to parents regarding their options. Definite prenatal diagnosis is only possible by invasive prenatal diagnostic testing (IPDT), mainly including amniocentesis and chorionic villous sampling (CVS). The aim of this comparative review was to summarize and compare the existing recommendations on IPDT from the most influential guidelines. ⋯ Certain technical aspects and the overall approach demonstrate significant differences. Periprocedural management regarding Rhesus alloimmunization, virologic status and use of anesthesia or antibiotics are either inconsistent or insufficiently addressed. The synthesis of an evidence-based algorithm for IPDT is of crucial importance to healthcare professionals implicated in prenatal care to avoid unnecessary interventions without compromising optimal prenatal care.
-
Guidelines have increasingly stressed the concept that adequate glycemic control is required to prevent or decrease the macro- and microvascular complications of type 2 diabetes mellitus (T2DM). PPAR-gamma agonists ("glitazones") are no longer prioritized due to their effects on heart failure. However, the association between these drugs and innovative therapies could be a valuable tool to attenuate the risk factors of the metabolic syndrome. ⋯ Unfortunately, the recent guidelines do not include them among the preferred drugs for the treatment of hyperglycemia and rosiglitazone is out of the market in many countries due to an adverse cardiovascular risk profile. Even though real-life studies have proven otherwise, and their pleiotropic effects have been highlighted, they have been unable to achieve primacy in the choice of antihyperglycemic drugs. It would be appropriate to demonstrate the usefulness of pioglitazone and its therapeutic benefit with further cardiovascular safety studies.
-
Background and Objectives: Many otologists face a dilemma in the decision-making process of surgical management of patients with cochlear nerve (CN) aplasia. The goal of this study is to provide fresh evidence on cochlear implantation (CI) results in patients with CN aplasia. Materials and Methods: We scrutinized functional outcomes in 37 ears of 21 children with bilateral CN aplasia who underwent unilateral or bilateral CI based on cross-sectional and longitudinal assessments. ⋯ Meanwhile, intraoperative electrically evoked compound action potential was not correlated with postoperative CAP score. Conclusions: Our results further refine previous studies on the clinical feasibility of CI as the first treatment modality to elicit favorable auditory performance in children with CN aplasia. However, special attention should be paid to pediatric patients with an early postoperative CAP score ≤1 for identification of unsuccessful cochlear implants and switching to auditory brainstem implants.
-
Background and Objectives: Saturation diving is a technique used in commercial diving. Decompression sickness (DCS) was the main concern of saturation safety, but procedures have evolved over the last 50 years and DCS has become a rare event. New needs have evolved to evaluate the diving and decompression stress to improve the flexibility of the operations (minimum interval between dives, optimal oxygen levels, etc.). ⋯ Results: VGE were detected in three divers at very low levels (insignificant), confirming the improvements achieved on saturation decompression procedures. As expected, the FMD showed an impairment of vascular function immediately at the end of the saturation in all divers but the divers fully recovered from these vascular changes in the next 9 following hours, regardless of the initial decompression starting depth. Conclusion: These changes suggest an oxidative/inflammatory dimension to the diving/decompression stress during saturation that will require further monitoring investigations even if the vascular impairement is found to recover fast.
-
Background and Objectives: Sickle cell anemia (SCA) is a hereditary monogenic disease due to a single β-globin gene mutation that codes for the production of sickle hemoglobin. Its phenotype is modulated by fetal hemoglobin (HbF), a product of γ-globin genes. Exploring the molecules that regulate γ-globin genes at both transcriptional and translational levels, including microRNA (miRNA), might help identify alternative therapeutic targets. ⋯ The involvement of identified miRNAs in potential SCD-related pathways was investigated with the DIANA TOOL and miRWalk 2.0 database. Results: miR-184 were most highly upregulated in reticulocytes. miR-3609 and miR-483-5p were most highly downregulated in sickle cell anemia with high HbF. miR-370-3p that regulates LIN28A, and miR-451a which is effective in modulating α- and β- globin levels were also significantly upregulated. miRNA targeted gene pathway interaction identified BCL7A, BCL2L1, LIN28A, KLF6, GATA6, solute carrier family genes and ZNF genes associated with erythropoiesis, cell cycle regulation, glycosphingolipid biosynthesis, cAMP, cGMP-PKG, mTOR, MAPK and PI3K-AKT signaling pathways and cancer pathways. Conclusions: miRNA signatures and their target genes identified novel miRNAs that could regulate fetal hemoglobin production and might be exploited therapeutically.