Cell research
-
Emerging evidence indicates that there are factors within the blood of young animals that have the ability to restore youthful characteristics to a number of organ systems in older animals. Growth/differentiation factor 11 (GDF11) is the first of such factors to be identified, and two new studies demonstrate that this "factor of youth" rejuvenates stem cells found in the skeletal muscle and brain of aged mice.
-
The gating charge pathway of an epilepsy-associated potassium channel accommodates chemical ligands.
Voltage-gated potassium (Kv) channels derive their voltage sensitivity from movement of gating charges in voltage-sensor domains (VSDs). The gating charges translocate through a physical pathway in the VSD to open or close the channel. Previous studies showed that the gating charge pathways of Shaker and Kv1.2-2.1 chimeric channels are occluded, forming the structural basis for the focused electric field and gating charge transfer center. ⋯ Nine activators with five new chemotypes were identified, and in vivo experiments showed that three ligands binding to the gating charge pathway exhibit significant anti-epilepsy activity. Identification of various novel activators by virtual screening targeting the pocket supports the presence of a ligand-binding site in the gating charge pathway. The capability of the gating charge pathway to accommodate small molecule ligands offers new insights into the gating charge pathway of the therapeutically relevant KCNQ2 channel.
-
Two recent publications suggest that dietary salt may polarize TH17 cells and therefore increase the risk of developing autoimmune disease. Where low salt diets can readily be tested for their therapeutic effects in autoimmune disease, more work is needed to connect dietary salts with the development of immunopathology.
-
Recent studies have uncovered a specific role of TET proteins in reprogramming somatic cells to induced pluripotent stem cells, a process where O-linked β-N-acetylglucosamine transferase may play a crucial role.
-
Two recent papers in Science illustrate how the prokaryotic CRISPR-Cas immune system machinery, which typically targets invasive genetic elements such as viruses and plasmids, can be converted into a sophisticated molecular tool for next-generation human genome editing. The versatile Cas9 RNA-guided endonuclease can be readily reprogrammed using customizable small RNAs for sequence-specific single- or double-stranded DNA cleavage.