Neural computation
-
Due to many experimental reports of synchronous neural activity in the brain, there is much interest in understanding synchronization in networks of neural oscillators and its potential for computing perceptual organization. Contrary to Hopfield and Herz (1995), we find that networks of locally coupled integrate-and-fire oscillators can quickly synchronize. ⋯ Inspired by locally excitatory globally inhibitory oscillator network (LEGION) dynamics with relaxation oscillators (Terman & Wang, 1995), we find that global inhibition can play a similar role of desynchronization in a network of integrate-and-fire oscillators. We illustrate that a LEGION architecture with integrate-and-fire oscillators can be similarly used to address image analysis.
-
Synchronization properties of fully connected networks of identical oscillatory neurons are studied, assuming purely excitatory interactions. We analyze their dependence on the time course of the synaptic interaction and on the response of the neurons to small depolarizations. Two types of responses are distinguished. ⋯ The latter exhibits a type II response, at variance with the first two models, that have type I responses. We then examine the consequences of these results for large networks, focusing on the states of partial coherence that emerge. Finally, we study the Lapicque model and the model of Connor et al. at large coupling and show that excitation can be desynchronizing even beyond the weak coupling regime.