Seminars in respiratory and critical care medicine
-
Nontuberculous mycobacteria (NTM) are ubiquitous in the environment and 193 species of NTM have been discovered thus far. NTM species vary in virulence from benign environmental organisms to difficult-to-treat human pathogens. Pulmonary infections remain the most common manifestation of NTM disease in humans and bronchiectasis continues to be a major risk factor for NTM pulmonary disease (NTM PD). ⋯ We will address the challenges faced in the diagnosis of NTM PD and the importance of subspeciation in guiding treatment and follow-up, especially in Mycobacterium abscessus infections. The treatment of both Mycobacterium avium complex and M. abscessus, the two most common NTM species known to cause disease, will be discussed in detail. Elements of the recent ATS/ERS/ESCMID/IDSA NTM guidelines published in 2020 will also be reviewed.
-
Bronchiectasis refers to both the name of a disease and a single radiological appearance that may, or may not, be associated with disease. As chronic respiratory disease, bronchiectasis is characterized by a variable range of signs and symptoms that may overlap with other chronic respiratory conditions. The proper identification of bronchiectasis as a disease in both primary and secondary care is of paramount importance. ⋯ Although the guidelines suggest a "minimum bundle" of tests, the diagnostic approach to bronchiectasis is challenging and may be driven by the "treatable traits" approach based on endotypes and biological characteristics. A broad spectrum of diagnostic tests could be used to investigate the etiology of bronchiectasis as well as other pulmonary, extrapulmonary, and environmental traits. Individualizing bronchiectasis workup according to the site of care (e.g., primary, secondary, and tertiary care) could help optimize patients' management and reduce healthcare costs.
-
Bronchiectasis is a heterogenous disease with multiple etiologies and associated comorbidities. As bronchiectasis is a complex disease, it is unsound to think of it as a single disease particularly when the differing etiologies are likely to be driving bronchiectasis through initial divergent molecular pathways, known as endotypes, that phenotypically present as the same disease due to protracted airway inflammation, but revealing potential differing underlying mechanisms that may have disparity of drug responses. Improved understanding of the cellular immune, inflammatory, and microbiological milieu associated with clinical and radiological features of bronchiectasis has resulted in the recognition of important endotypes and phenotypes that will allow for personalized treatments to improve quality of life and outcomes of patients with bronchiectasis. Here we discuss clinical and radiological phenotypes, as well as emerging molecular endotypes that are possible treatable traits in bronchiectasis.
-
Primary ciliary dyskinesia (PCD) is an inherited cause of bronchiectasis. The estimated PCD prevalence in children with bronchiectasis is up to 26% and in adults with bronchiectasis is 1 to 13%. Due to dysfunction of the multiple motile cilia of the respiratory tract patients suffer from poor mucociliary clearance. ⋯ The first international randomized controlled trial in PCD has recently been conducted showing azithromycin is effective in reducing exacerbations. It is likely that evidence-based PCD-specific management guidelines and therapies will be developed in the near future. This article examines prevalence, clinical features, diagnosis, and management of PCD highlighting recent advances in basic science and clinical care.
-
Bronchiectasis is a complex, heterogeneous disorder defined by both a radiological abnormality of permanent bronchial dilatation and a clinical syndrome. There are multiple underlying causes including severe infections, mycobacterial disease, autoimmune conditions, hypersensitivity disorders, and genetic conditions. The pathophysiology of disease is understood in terms of interdependent concepts of chronic infection, inflammation, impaired mucociliary clearance, and structural lung damage. ⋯ The contribution of chronic inflammation, infection, and mucus obstruction leads to progressive structural lung damage. The heterogeneity of the disease is the most challenging aspect of management. An understanding of the pathophysiology of disease and their biomarkers can help to guide personalized medicine approaches utilizing the concept of "treatable traits."