Immunity
-
Airway Memory CD4(+) T Cells Mediate Protective Immunity against Emerging Respiratory Coronaviruses.
Two zoonotic coronaviruses (CoVs)-SARS-CoV and MERS-CoV-have crossed species to cause severe human respiratory disease. Here, we showed that induction of airway memory CD4(+) T cells specific for a conserved epitope shared by SARS-CoV and MERS-CoV is a potential strategy for developing pan-coronavirus vaccines. Airway memory CD4(+) T cells differed phenotypically and functionally from lung-derived cells and were crucial for protection against both CoVs in mice. ⋯ The conserved epitope was also recognized in SARS-CoV- and MERS-CoV-infected human leukocyte antigen DR2 and DR3 transgenic mice, indicating potential relevance in human populations. Additionally, this epitope was cross-protective between human and bat CoVs, the progenitors for many human CoVs. Vaccine strategies that induce airway memory CD4(+) T cells targeting conserved epitopes might have broad applicability in the context of new CoVs and other respiratory virus outbreaks.
-
Predicting cancer patients' response to therapy is essential for curing disease and improving quality of life. Garraway and colleagues demonstrate that the frequency and number of neoantigens, non-synonymous mutations, and adaptive immune genes, but not the assessment of individual recurrent neoantigens or mutations, predicts patient responses to immunotherapy.
-
What causes slow wound healing rates in diabetes is poorly understood. Wong et al. (2015) report that an increase in the deployment of neutrophil extracellular traps associated with hyperglycemia slows down wound healing.
-
Foxp3(+) T regulatory (Treg) cells prevent inflammatory disease but the mechanistic basis of suppression is not understood completely. Gene silencing by RNA interference can act in a cell-autonomous and non-cell-autonomous manner, providing mechanisms of intercellular regulation. Here, we demonstrate that non-cell-autonomous gene silencing, mediated by miRNA-containing exosomes, is a mechanism employed by Treg cells to suppress T-cell-mediated disease. ⋯ Use of Dicer-deficient or Rab27a and Rab27b double-deficient Treg cells to disrupt miRNA biogenesis or the exosomal pathway, respectively, established a requirement for miRNAs and exosomes for Treg-cell-mediated suppression. Transcriptional analysis and miRNA inhibitor studies showed that exosome-mediated transfer of Let-7d from Treg cell to Th1 cells contributed to suppression and prevention of systemic disease. These studies reveal a mechanism of Treg-cell-mediated suppression mediated by miRNA-containing exosomes.
-
Sepsis, a clinical syndrome occurring in patients following infection or injury, is a leading cause of morbidity and mortality worldwide. Current immunological mechanisms do not explain the basis of cellular dysfunction and organ failure, the ultimate cause of death. Here we review current dogma and argue that it is time to delineate novel immunometabolic and neurophysiological mechanisms underlying the altered cellular bioenergetics and failure of epithelial and endothelial barriers that produce organ dysfunction and death. These mechanisms might hold the key to future therapeutic strategies.