Biochemistry
-
We previously demonstrated that the absence of poly(ADP-ribose) glycohydrolase (PARG) led to increased cell death following DNA-damaging treatments. Here, we investigated cell death pathways following UV treatment. Decreased amounts of PARG-null embryonic trophoblast stem (TS) cells were observed following doses of 10-100 J/m2 as compared to wild-type cells. ⋯ The results demonstrate nuclear AIF translocation only in PARG-null TS cells, which demonstrates the presence of AIF-mediated cell death. Herein, we provide compelling evidence that the absence of PARG leads to decreased caspase-3 activity and the specific activation of AIF-mediated cell death. Therefore, the absence of PARG may provide a strategy for specifically inducing an alternative apoptotic pathway.
-
Comparative Study
Binding of the hemopressin peptide to the cannabinoid CB1 receptor: structural insights.
Hemopressin, a bioactive nonapeptide derived from the α1 chain of hemoglobin, was recently shown to possess selective antagonist activity at the cannabinoid CB(1) receptor [Heimann, A. S., et al. (2007) Proc. Natl. ⋯ The binding modes of both hemopressin and hemopressin(1-6) are investigated by molecular docking calculations. Our conformational data indicate that regular turn structures in the central portion of hemopressin and hemopressin(1-6) are critical for an effective interaction with the receptor. The results of molecular docking calculations, indicating similarities and differences in comparison to the most accepted CB(1) pharmacophore model, suggest the possibility of new chemical scaffolds for the design of new CB(1) antagonist lead compounds.
-
Huntington's disease (HD) is a currently incurable neurodegenerative disease caused by the expansion of a CAG trinucleotide repeat within the huntingtin (HTT) gene. Therapeutic approaches include selectively inhibiting the expression of the mutated HTT allele while conserving function of the normal allele. We have evaluated a series of antisense oligonucleotides (ASOs) targeted to the expanded CAG repeat within HTT mRNA for their ability to selectively inhibit expression of mutant HTT protein. ⋯ We observed cooperative binding of multiple ASO molecules to CAG repeat-containing HTT mRNA transcripts in vitro. These results are consistent with a mechanism involving inhibition at the level of translation. ASOs targeted to the CAG repeat of HTT provide a starting point for the development of oligonucleotide-based therapeutics that can inhibit gene expression with allelic discrimination in patients with HD.
-
The biochemical and pharmacological activities of nobiletin, including neurotrophic and memory-enhancing action, in both in vitro and in vivo systems are well established. However, whether its metabolites do have such beneficial effects like nobiletin remains to be examined. Here we, for the first time, report that 2-(4-hydroxy-3-methoxyphenyl)-5,6,7,8-tetramethoxychromen-4-one (4'-demethylnobiletin), a major metabolite of nobiletin identified in the urine of rats and mice, stimulates the phosphorylation of ERK and CREB and enhances CRE-mediated transcription by activating a PKA/MEK/ERK pathway, like nobiletin, in cultured hippocampal neurons. ⋯ Consistently, 4'-demethylnobiletin also restored MK-801-induced inhibition of NMDA-stimulated phosphorylation of not only ERK but also PKA substrates in cultured rat hippocampal neurons. Moreover, we actually detected 4'-demethylnobiletin in the brain of mice following acute ip administration, demonstrating that the metabolite can cross the blood-brain barrier to reach the brain and thereby exert its effects to reverse learning impairment. Therefore, these results suggest that 4'-demethylnobiletin, a bioactive metabolite of nobiletin, may serve as a potential therapeutic agent, at least, for memory disorders associated with a dysregulated NMDA receptor ERK signaling, like nobiletin.
-
Neuroglobin (Ngb) is a recently discovered vertebrate heme protein that is expressed in the brain and can reversibly bind oxygen. Mammalian Ngb is involved in neuroprotection under oxidative stress conditions, such as ischemia and reperfusion. We previously demonstrated that human ferric Ngb binds to the alpha subunit of heterotrimeric G proteins (Galphai) and acts as a guanine nucleotide dissociation inhibitor (GDI) for Galphai. ⋯ In the present study, we found that chimeric ZHHH Ngb, in which module M1 of human Ngb is replaced by that of zebrafish Ngb, protects PC12 cells against oxidative stress-induced cell death even in the absence of Chariot. Using fluorescein isothiocyanate (FITC)-labeled Ngb proteins, we demonstrated that both zebrafish and chimeric ZHHH Ngb can penetrate cell membranes in the absence of Chariot, suggesting that module M1 of zebrafish Ngb can translocate into cells. This is the first report of a native cell-membrane-penetrating globin.