Amyloid : the international journal of experimental and clinical investigation : the official journal of the International Society of Amyloidosis
-
Amyloidosis refers to a group of degenerative diseases that are characterized by the deposition of misfolded protein fibrils in various organs. Deposited amyloid may be removed by a phagocyte-dependent innate immune system; however, the precise mechanisms during disease progression remain unclear. We herein investigated the properties of macrophages that contribute to amyloid degradation and disease progression using inducible apolipoprotein A-II amyloidosis model mice. ⋯ While cultured murine macrophages degraded AApoAII via the endosomal-lysosomal pathway, AApoAII fibrils reduced cell viability and phagocytic capacity. Furthermore, the depletion of reticuloendothelial macrophages before the induction of AApoAII markedly increased hepatic and splenic AApoAII deposition. These results highlight the physiological role of reticuloendothelial macrophages in the early stages of pathogenesis and suggest the maintenance of phagocytic integrity as a therapeutic strategy to inhibit disease progression.
-
Lung involvement in AL amyloidosis is not very common, but post-mortem data and retrospective studies suggest it is likely underrecognized. ⋯ Pulmonary dysfunction, as assessed with PFTs, is common and underrecognized in patients with systemic AL amyloidosis, with significant prognostic and potentially therapeutic implications, independent of the degree of cardiac dysfunction or chest-CT findings.
-
This study characterised real-world treatment patterns, clinical outcomes, and cost-of-illness in patients with light-chain (AL) amyloidosis. ⋯ AL amyloidosis is associated with substantial costs and suboptimal outcomes, highlighting the need for new therapeutic approaches to prevent organ deterioration, and reduce disease burden.
-
Transthyretin (TTR) dissociation is the rate limiting step for both aggregation and subunit exchange. Kinetic stabilisers, small molecules that bind to the native tetrameric structure of TTR, slow TTR dissociation and inhibit aggregation. One such stabiliser is the non-steroidal anti-inflammatory drug (NSAID), diflunisal, which has been repurposed to treat TTR polyneuropathy. ⋯ The measured mean diflunisal plasma concentration from both groups was 282.2 μM ± 143.7 μM (mean ± standard deviation). Thus, quantification of TTR kinetic stabilisation using subunit exchange was carried out at 100, 200, 300, and 400 μM diflunisal concentrations, all observed in patients after 250 mg BID oral dosing. A 250 μM diflunisal plasma concentration reduced the wild-type TTR dissociation rate in plasma by 95%, which is sufficient to stop transthyretin aggregation, consistent with the clinical efficacy of diflunisal for ameliorating transthyretin polyneuropathy.