Amyloid : the international journal of experimental and clinical investigation : the official journal of the International Society of Amyloidosis
-
The p.Glu109Lys variant (Glu89Lys) is a rare cause of hereditary transthyretin amyloidosis (ATTRv) for which clinical spectrum remains unresolved. We sought to describe the clinical characteristics and outcomes of ATTR Glu89Lys amyloidosis and assess a potential founder effect in Spain. ⋯ Glu89Lys ATTRv is a TTR variant with a founder effect in Spain. It is associated with near complete penetrance, early onset and mixed cardiac and neurologic phenotype. Patients have poor prognosis, particularly if not treated with disease-modifying therapies.
-
Lung involvement in AL amyloidosis is not very common, but post-mortem data and retrospective studies suggest it is likely underrecognized. ⋯ Pulmonary dysfunction, as assessed with PFTs, is common and underrecognized in patients with systemic AL amyloidosis, with significant prognostic and potentially therapeutic implications, independent of the degree of cardiac dysfunction or chest-CT findings.
-
The amyloidogenic transthyretin (TTR) variant, V122I, occurs in 4% of the African American population and frequently presents as a restricted cardiomyopathy. While heterozygosity for TTR V122I predominates, several compound heterozygous cases have been previously described. Herein, we detail features of ATTRv amyloidosis associated with novel compound heterozygous TTR mutation, T60I/V122I and provide evidence supporting the amyloidogenecity of T60I. ⋯ This report provides clinical and experimental results supporting the amyloidogenic nature of a novel TTR T60I variant. In vitro data indicate that the destabilising effect of individual T60I and V122I variants appears to be additive rather than synergistic.
-
Amyloidosis refers to a group of degenerative diseases that are characterized by the deposition of misfolded protein fibrils in various organs. Deposited amyloid may be removed by a phagocyte-dependent innate immune system; however, the precise mechanisms during disease progression remain unclear. We herein investigated the properties of macrophages that contribute to amyloid degradation and disease progression using inducible apolipoprotein A-II amyloidosis model mice. ⋯ While cultured murine macrophages degraded AApoAII via the endosomal-lysosomal pathway, AApoAII fibrils reduced cell viability and phagocytic capacity. Furthermore, the depletion of reticuloendothelial macrophages before the induction of AApoAII markedly increased hepatic and splenic AApoAII deposition. These results highlight the physiological role of reticuloendothelial macrophages in the early stages of pathogenesis and suggest the maintenance of phagocytic integrity as a therapeutic strategy to inhibit disease progression.