Biophysical journal
-
Biophysical journal · Mar 2001
Dynamic contact forces on leukocyte microvilli and their penetration of the endothelial glycocalyx.
We develop a theoretical model to examine the combined effect of gravity and microvillus length heterogeneity on tip contact force (F(m)(z)) during free rolling in vitro, including the initiation of L-, P-, and E-selectin tethers and the threshold behavior at low shear. F (m)(z) grows nonlinearly with shear. At shear stress of 1 dyn/cm(2), F(m)(z) is one to two orders of magnitude greater than the 0.1 pN force for gravitational settling without flow. ⋯ The model predicts that for arteriolar capillaries even the longest microvilli cannot initiate rolling, except in regions of low shear or flow reversal. In postcapillary venules, where shear stress is approximately 2 dyn/cm(2), tethering interactions are highly likely, provided that there are some relatively long microvilli. Once tethering is initiated, rolling tends to ensue because F(m)(z) and contact duration will both increase substantially to facilitate glycocalyx penetration by the shorter microvilli.
-
Biophysical journal · Jan 2000
Isoform-specific lidocaine block of sodium channels explained by differences in gating.
When depolarized from typical resting membrane potentials (V(rest) approximately -90 mV), cardiac sodium (Na) currents are more sensitive to local anesthetics than brain or skeletal muscle Na currents. When expressed in Xenopus oocytes, lidocaine block of hH1 (human cardiac) Na current greatly exceeded that of mu1 (rat skeletal muscle) at membrane potentials near V(rest), whereas hyperpolarization to -140 mV equalized block of the two isoforms. Because the isoform-specific tonic block roughly parallels the drug-free voltage dependence of channel availability, isoform differences in the voltage dependence of fast inactivation could underlie the differences in block. ⋯ A mutant channel with enhanced closed-state inactivation gating (mu1-R1441C) exhibited increased lidocaine sensitivity, emphasizing the importance of closed-state inactivation in lidocaine action. Moreover, when the depolarization was prolonged to 1 s, recovery from a "slow" inactivated state with intermediate kinetics (I(M)) was fourfold longer in hH1 than in mu1, and recovery from lidocaine block in hH1 was similarly delayed relative to mu1. We propose that gating processes coupled to fast inactivation (activation and slow inactivation) are the key determinants of isoform-specific local anesthetic action.
-
Biophysical journal · Apr 1997
Titration calorimetry of anesthetic-protein interaction: negative enthalpy of binding and anesthetic potency.
Anesthetic potency increases at lower temperatures. In contrast, the transfer enthalpy of volatile anesthetics from water to macromolecules is usually positive. The transfer decreases at lower temperature. ⋯ The low-affinity K was 189 +/- 3.8 M-1 (KD = 5.29 mM), with a Bmax of 13.2 +/- 0.3. Anesthetic potency is a function of the activity of anesthetic molecules, not the concentration. Because the sign of delta H determines the temperature dependence of distribution of anesthetic molecules, it is irrelevant to the temperature dependence of anesthetic potency.
-
Modern methods of encoding information into digital form include error check digits that are functions of the other information digits. When digital information is transmitted, the values of the error check digits can be computed from the information digits to determine whether the information has been received accurately. These error correcting codes make it possible to detect and correct common errors in transmission. ⋯ We developed an efficient procedure to determine whether such an error correcting code is present in the base sequence. We illustrate the use of this procedure by using it to analyze the lac operon and the gene for cytochrome c. These genes do not appear to contain such a simple error correcting code.
-
Biophysical journal · Nov 1995
Study of phospholipid structure by 1H, 13C, and 31P dipolar couplings from two-dimensional NMR.
Various motionally averaged 31P-1H, 13C-1H, 1H-1H, and 31P-13C dipolar couplings were measured for natural-abundance and unoriented phosphocholine in the L alpha phase. The couplings were obtained and assigned by a variety of advanced and partly novel two-dimensional solid-state NMR experiments. ⋯ The implications of these measured dipolar couplings for the conformational exchange of the lipid headgroup and the bending of the headgroup from the glycerol backbone are discussed. These dipolar couplings are also analyzed semiquantitatively in terms of the segmental order tensor.