Phytomedicine : international journal of phytotherapy and phytopharmacology
-
Uncaria tomentosa ("uña de gato"; "cat's claw"), a woody vine native to the Amazon rainforest, is commonly used in South American traditional medicine to treat a broad spectrum of diseases. Although recent studies have reported anti-inflammatory and anti-proliferative properties of different alkaloids extracted from this plant, the underlying molecular mechanisms of these effects have not been elucidated yet. Our study investigates the inhibitory mechanisms of Uncaria tomentosa extracts on the Wnt-signaling pathway, a central regulator of development and tissue homoeostasis. ⋯ Downregulation of Wnt-signaling by a dominant negative-TCF-4 variant in non-cancer cells rendered the cells insensitive towards treatment with B/S(rt). B/Srt was less toxic in non-cancer cells than in cancer cells. Our data suggest that the broad spectrum of pharmacological action of Uncaria tomentosa involves inhibition of the Wnt-signaling pathway, downstream of beta-Catenin activity.
-
The widely used over-the-counter analgesic acetaminophen (APAP) is the leading cause of acute liver failure in the United States and due to this high incidence, a recent FDA Advisory Board recommended lowering the maximum dose of APAP. Kava herbal dietary supplements have been implicated in several human liver failure cases leading to the ban of kava-containing products in several Western countries. In the US, the FDA has issued warnings about the potential adverse effects of kava, but kava dietary supplements are still available to consumers. ⋯ In addition, similar findings were obtained from a cultured rat liver cell line, clone-9. These observations indicate that kava potentiates APAP-induced cytotoxicity by increasing the magnitude of GSH depletion, resulting in oxidative stress and mitochondrial dysfunction, ultimately leading to cell death. These results highlight the potential for drug-dietary supplement interactions even with widely used over-the-counter drugs.
-
Randomized Controlled Trial Multicenter Study
Radix/rhizoma notoginseng extract (sanchitongtshu) for ischemic stroke: a randomized controlled study.
Agents of sanchi have been widely used as a complementary medicine for stroke in China. Sanchitongshu is a new Chinese patent medicine extracted from sanchi which has stronger anti-platelet activity than other agents of sanchi. Our aim was to investigate the synergistic action of low dose of aspirin combined with sanchitongshu capsule in the treatment of patients with light and moderate ischemic stroke in acute and subacute stages. ⋯ Adverse reaction which occurred equally in both arms, was light to moderate and disappeared without special treatment. Sanchitongshu capsule, as a complementary medicine to aspirin, was effective in improving outcomes after ischemic stroke. It was a safe drug in our trial.
-
Recent studies suggest that olive extracts suppress inflammation and reduce stress oxidative injury. We sought to extend these observations in an in vivo study of rat cerebral ischemia-reperfusion injury. Four groups, each of 18 Wister rats, were studied. ⋯ Olive leaf extract reduced the LDL/HDL ratio in doses 50, 75, and 100mg/kg/day in comparison to the control group (P<0.001), and offered cerebroprotection from ischemia-reperfusion. For controls vs. doses of 50mg/kg/day vs. 75 mg/kg/day vs. 100mg/kg/day, attenuated corrected infarct volumes were 209.79 ± 33.05 mm(3) vs. 164.36 ± 13.44 mm(3) vs. 123.06 ± 28.83 mm(3) vs. 94.71 ± 33.03 mm(3); brain water content of the infarcted hemisphere 82.33 ± 0.33% vs. 81.33 ± 0.66% vs. 80.75 ± 0.6% vs. 80.16 ± 0.47%, and blood-brain barrier permeability of the infarcted hemisphere 11.22 ± 2.19 μg/g vs. 9.56 ± 1.74 μg/g vs. 6.99 ± 1.48 μg/g vs. 5.94 ± 1.73 μg/g tissue (P<0.05 and P<0.01 for measures in doses 75 and 100mg/kg/day vs. controls respectively). Oral administration of olive leaf extract reduces infarct volume, brain edema, blood-brain barrier permeability, and improves neurologic deficit scores after transient middle cerebral artery occlusion in rats.
-
This study investigates the anti-MCF-7 breast cancer cell effects and the underlying pharmacological activity and mechanism of taiwanin A, a major lignan isolated from Taiwania cryptomerioides. Our results show that taiwanin A time-dependently induced reactive oxygen species level and DNA damage in MCF-7 cells, which were likely activated kinases ataxia telangiectasia mutated (ATM) and checkpoint kinase (Chk). Taiwanin A could also up-regulate p53, phosphorylated p53, p21(Cip1), and p27(Kip1) and down-regulate the G(2)/M checkpoint cyclin-dependent kinase1 (Cdk1)-cyclin A/B, leading to induction of G(2)/M cell-cycle arrest in MCF-7 cells. ⋯ The FasL/Fas-mediated apoptotic signaling cascade was involved in taiwanin A-induced apoptosis via activation of caspases-10 and -7 (but not caspase-8), and proteolytic cleavage of poly(ADP-ribose) polymerase (PARP). In contrast, mitochondria-initiated apoptotic pathway was not involved. This is the first report to delineate novel mechanism of the action of taiwanin A against MCF-7 cells, suggesting this lignan may have value for development as an anti-breast cancer agent.