Current medicinal chemistry
-
Review
Pulmonary coagulopathy as a new target in lung injury--a review of available pre-clinical models.
Despite recent advances in supportive care, acute lung injury (ALI) and its more severe form acute respiratory distress syndrome (ARDS) are clinical entities with high morbidity and high mortality. In systemic inflammation, like sepsis, uncontrolled host defense can lead to systemic activation of coagulation on the one hand, and attenuation of fibrinolysis on the other. In ALI/ARDS similar but local disturbances in fibrin turnover occur, leading to excessive alveolar fibrin deposition compromising pulmonary integrity and function. ⋯ A solid base has to be provided by preclinical studies to justify clinical studies on new pharmacologic therapies for ALI/ARDS. In this systematic literature review we give an overview of the models for ALI/ARDS that have been used so far on the topic of pulmonary coagulopathy and focus on the pharmacological interventions that have been evaluated with these models. Finally, the applicability of the different approaches for future research on this subject will be discussed.
-
Chemotherapy-induced neurotoxicity is a significant complication in the successful treatment of many cancers. Neurotoxicity may develop as a consequence of treatment with platinum analogues (cisplatin, oxaliplatin, carboplatin), taxanes (paclitaxel, docetaxel), vinca alkaloids (vincristine) and more recently, thalidomide and bortezomib. Typically, the clinical presentation reflects an axonal peripheral neuropathy with glove-and-stocking distribution sensory loss, combined with features suggestive of nerve hyperexcitability including paresthesia, dysesthesia, and pain. ⋯ The mechanisms underlying chemotherapy-induced neurotoxicity are diverse and include damage to neuronal cell bodies in the dorsal root ganglion and axonal toxicity via transport deficits or energy failure. More recently, axonal membrane ion channel dysfunction has been identified, including studies in patients treated with oxaliplatin which have revealed alterations in axonal Na(+) channels, suggesting that prophylactic pharmacological therapies aimed at modulating ion channel activity may prove useful in reducing neurotoxicity. As such, improved understanding of the pathophysiology of chemotherapy-induced neurotoxicity will inevitably assist in the development of future neuroprotective strategies and in the design of novel chemotherapies with improved toxicity profiles.
-
P. aeruginosa is a serious cause of infection with reported rates of mortality being up to 61%. Several studies evidenced a correlation between hospital mortality due to P. aeruginosa bloodstream infections and an inappropriate antimicrobial treatment. ⋯ Current consensus favours the use of empirical combination, balancing the potential for greater toxicity against the lower emergence of antimicrobial resistance and the greater killing that might be achieved by combination therapies acting synergistically. Advantages and disadvantages of combination therapy towards monotherapy for P. aeruginosa severe infections, current antibiotics used for P. aeruginosa severe infections and main studies published on this issue are reviewed.
-
It is estimated that a third of the world's population is currently infected with tuberculosis, leading to 1.6 million deaths annually. The current drug regimen is 40 years old and takes 6-9 months to administer. In addition, the emergence of drug resistant strains and HIV co-infection mean that there is an urgent need for new anti-tuberculosis drugs. ⋯ This review considers new potential first-line anti-tuberculosis drug candidates, in particular those with novel mechanisms of action, as these are most likely to prove effective against resistant strains. A brief overview of current first-line and recent drugs (such as fluoroquinolones, rifampicin and isoniazid analogues) is initially presented. This is followed by a description of structure-activity relationships, in vitro and in vivo activity, pharmacokinetics, mechanism of action, combination regimens and clinical trials of the new drug candidates SQ109, PA-824, OPC-67683, TMC207 and others.