Current medicinal chemistry
-
The latest advancement in neurobiological research provided an increasing evidence that inflammatory and neurodegenerative pathways play a relevant role in depression. Preclinical and clinical studies on depression highlighted an increased production of inflammatory markers, such as interleukin (IL)-1, IL-6, tumor necrosis factor-α and interferon- α and γ. On the other hand, acute and chronic administration of cytokines or cytokine inducers were found to trigger depressive symptoms. ⋯ Besides the 5-HT system, other targets, possibly within the I&ND pathways, should be considered for the future treatment of depression: cytokines and their receptors, intracellular inflammatory mediators, IDO, TRYCATs, glucocorticoid receptors, neurotrophic factors may all represent possible therapeutic targets for novel antidepressants. In addition, it should be also clarified the role of the existing anti-inflammatory drugs in the treatment of depression, and those compounds with the anti-inflammatory and anti-oxidative properties should be examined either as monotherapy or adjunctive therapy. In conclusion, the molecular inflammatory and neurodegenerative pathways might provide new targets for antidepressant development and might be crucial to establish a rational treatment of depression aimed, hopefully, to its causal factors.
-
Angiogenesis is known to be essential for the development and progression of cancer. Vascular endothelial growth factor (VEGF) is a critical mediator in tumor angiogenesis for many solid malignancies, including breast cancer. Increased levels of VEGF have been associated with poor clinical outcomes, including reduced survival. ⋯ Several trials to define the role of bevacizumab in different setting of disease and in combination with different chemotherapy regimens and targeted therapy in breast cancer patients are ongoing. Other small molecule inhibitors of VEGF tyrosine kinase activity (TKIs) such as sunitinib, vandetanib and sorafenib are being tested in MBC. This review will focus on bevacizumab and on the developements of the main antiangiogenic agents in the treatment of breast cancer.
-
Voltage-gated sodium channels produce fast depolarization, which is responsible for the rising phase of the action potential in neurons, muscles and heart. These channels are very large membrane proteins and are encoded by ten genes in mammals. Sodium channels are a crucial component of excitable tissues; hence, they are a target for various neurotoxins that are produced by plants and animals for defence and protection, such as tetrodotoxin, scorpion toxins and batrachotoxin. ⋯ In this review, we discuss aspects of voltage-gated sodium channel genes with an emphasis on cardiac muscle sodium channels. In addition, we report novel mutations that underlie a spectrum of diseases, such as Brugada, long QT syndrome and inherited conduction disorders. Furthermore, this review explains commonalities and differences among the channel subtypes, the channelopathies caused by the sodium channel gene mutation and the specificity of toxins and blockers of the channel subtypes.
-
Sepsis remains a common cause of death in the intensive care units worldwide. However, in the last decade a significant development could be noticed in sepsis research regarding diagnostic markers that can help the physicians to recognize the disease in the early phase, which is the clue of the successful treatment of sepsis. This development provided the identification of new molecules and structures (i.e. cytokines, cell surface markers, receptors) that are potential biomarkers of sepsis in the clinical settings. ⋯ We will describe the presumed pathophysiological role and diagnostic value of sepsis markers that are used even more widely in the clinical practice (i.e. procalcitonin, IL-6), summarize the data regarding the sepsis marker candidates that are investigated in some initial study (i.e. matrix metalloproteinases, microRNA fingerprints), and we will discuss substances that may be specific markers for certain organ failures related to sepsis (i.e. neutrophil gelatinase-derived lipocalin in acute renal failure). Furthermore, we will review the mediators of the immuno-inflammatory cascade in sepsis concerning their potential applicability as therapeutic targets in the treatment of this often lethal disease. In addition, we present some insights into the identification of genetic markers of sepsis.
-
Methylxanthines, such as theophylline, have been used to treat cardiorespiratory disorders, whereas caffeine is the most widely consumed psychoactive agent in various soft drinks. Because of the worldwide use of these drugs and the recently synthesized xanthine derivatives, an intensive research on the cardiac actions of these substances is under progress. This review focuses on the molecular mechanisms involved in the actions of xanthine derivatives with special reference to their adenosine receptor antagonistic properties. ⋯ Upregulation of adenosine receptors and increased effectiveness of adenosine receptor-related cardiovascular functions have been observed after long-lasting treatment with methylxanthines. In addition, there are data indicating that blood adenosine level increases after long-term caffeine administration. Since the salutary actions (and also the adverse reactions) of a number of xanthine derivatives are repeatedly shown, the main goal is the development of novel structures that mimic the actions of the conventional methylxanthines as lead compounds, but their adenosine receptor subtype-specificity is higher, their water solubility is optimal, and the unwanted reactions are minimized.