Current medicinal chemistry
-
Despite newly developed antiepileptic drugs to suppress epileptic symptoms, approximately one third of patients remain drug refractory. Consequently, there is an urgent need to develop more effective therapeutic approaches to treat epilepsy. A great deal of evidence suggests that endogenous nucleosides, such as adenosine (Ado), guanosine (Guo), inosine (Ino) and uridine (Urd), participate in the regulation of pathomechanisms of epilepsy. ⋯ Adenosine kinase (ADK) inhibitors, Ado uptake inhibitors and Ado-releasing implants also have beneficial effects on epileptic seizures. These results suggest that nucleosides and their analogues, in addition to other modulators of the nucleoside system, could provide a new opportunity for the treatment of different types of epilepsies. Therefore, the aim of this review article is to summarize our present knowledge about the nucleoside system as a promising target in the treatment of epilepsy.
-
Indocyanine green (ICG) is a water-soluble anionic tricarbocyanine dye developed during the Second World War that was first approved for clinical use in humans in 1956. The main features of ICG that make it suitable for bioimaging applications are its near infrared absorption and its fluorescence. ⋯ Moreover, ICG can be used for hyperthermia of enhanced-photocoagulation of blood vessels treatment. In this paper we have gathered all the available data concerning the use of ICG for different treatments.
-
Although the pathophysiological mechanisms underlying the development of amyotrophic lateral sclerosis (ALS) remain to be fully elucidated, there have been significant advances in the understanding of ALS pathogenesis, with evidence emerging of a complex interaction between genetic factors and dysfunction of vital molecular pathways. Glutamate- mediated excitoxicity is an important pathophysiological pathway in ALS, and was identified as an important therapeutic biomarker leading to development of the only pharmacologically based disease-modifying treatment currently available for ALS. ⋯ Genetic therapies, including antisense oligonucleotide approaches have been shown to exert neuroprotective effects in animal models of ALS, and Phase I human trial have been completed demonstrating the feasibility of such a therapeutic approach. The present review summarises the advances in ALS pathogenesis, emphasising the importance of these processes as potential targets for drug development in ALS.