Current medicinal chemistry
-
Chemokines, which have chemotactic abilities, are comprised of a family of small cytokines with 8-10 kilodaltons. Chemokines work in immune cells by trafficking and regulating cell proliferation, migration, activation, differentiation, and homing. CXCR-4 is an alpha-chemokine receptor specific for stromal-derived-factor-1 (SDF-1, also known as CXCL12), which has been found to be expressed in more than 23 different types of cancers. ⋯ CXCL12/CXCR4 antagonists have been produced, which have shown encouraging results in anti-cancer activity. Here, we provide a brief overview of the CXCL12/CXCR4 axis as a molecular target for cancer treatment. We also review the potential utility of targeting CXCL12/CXCR4 axis in combination of immunotherapy and/or chemotherapy based on up-to-date literature and ongoing research progress.
-
Anti-tumor necrosis factor (anti-TNF) monoclonal antibodies have revolutionized the treatment of inflammatory bowel diseases (IBD). However, because of their complexity, their production is expensive contributing to their high price. As the patent protection of these therapies has expired in several countries, biosimilars have been developed to reduce the healthcare costs. The aim of this article is to review the literature on the safety, efficacy and immunogenicity of biosimilars in IBD. ⋯ The infliximab biosimilar seems to be efficacious, safe and with a similar immunogenicity profile as the originator in IBD. Large prospective post-marketing studies are needed to assess the long-term safety profile of CT-P13. The use of infliximab biosimilars may lead to major healthcare cost savings.
-
Asthma is a heterogeneous disease characterized by chronic airway inflammation that results in a wide spectrum of clinical manifestations. Patients with severe asthma represent a substantial share of consumption of healthcare resources and hospitalization. Moreover, these patients are at risk of increased morbidity and mortality. ⋯ The long-term safety of these biologics is a relevant issue that should be addressed. Unfortunately, little is known about non-type 2 asthma. Further studies are needed to identify biomarkers to guide targeted therapies of different forms of non-type 2 asthma.
-
Chronic pain states are clinically relevant and yet unsolved conditions impacting on quality of life and representing an important social and economic burden; these diseases are poorly treated with the currently available drugs, being urgent the need of innovative analgesics. In this frame, novel analogues of endomorphin-1 and dermorphin emerge as promising starting points to develop innovative, more effective analgesics to treat neuropathic pain. ⋯ This review reports that innovative opioid peptides will be of great help in better understanding the multifaceted scenario of neuropathic pain treatment, providing very interesting opportunities for the identification of novel and more effective opioid analgesics to be employed as medications.
-
The human gut is a composite anaerobic environment with a large, diverse and dynamic enteric microbiota, represented by more than 100 trillion microorganisms, including at least 1000 distinct species. The discovery that a different microbial composition can influence behavior and cognition, and in turn the nervous system can indirectly influence enteric microbiota composition, has significantly contributed to establish the well-accepted concept of gut-brain axis. This hypothesis is supported by several evidence showing mutual mechanisms, which involve the vague nerve, the immune system, the hypothalamic-pituitaryadrenal (HPA) axis modulation and the bacteria-derived metabolites. ⋯ A possible correlation has been shown between these lipids and gut microbiota through different mechanisms. Indeed, systemic administration of specific bacteria can reduce abdominal pain through the involvement of cannabinoid receptor 1 in the rat; on the other hand, PEA reduces inflammation markers in a murine model of inflammatory bowel disease (IBD), and butyrate, producted by gut microbiota, is effective in reducing inflammation and pain in irritable bowel syndrome and IBD animal models. In this review, we underline the relationship among inflammation, pain, microbiota and the different lipids, focusing on a possible involvement of NAEs and SCFAs in the gut-brain axis and their role in the central nervous system diseases.