Neurobiology of disease
-
Neurobiology of disease · Sep 2014
Chronic administration of cholesterol oximes in mice increases transcription of cytoprotective genes and improves transcriptome alterations induced by alpha-synuclein overexpression in nigrostriatal dopaminergic neurons.
Cholesterol-oximes TRO19622 and TRO40303 target outer mitochondrial membrane proteins and have beneficial effects in preclinical models of neurodegenerative diseases leading to their advancement to clinical trials. Dopaminergic neurons degenerate in Parkinson's disease (PD) and are prone to oxidative stress and mitochondrial dysfunction. In order to provide insights into the neuroprotective potential of TRO19622 and TRO40303 for dopaminergic neurons in vivo, we assessed their effects on gene expression in laser captured nigrostriatal dopaminergic neurons of wildtype mice and of mice that over-express alpha-synuclein, a protein involved in both familial and sporadic forms of PD (Thy1-aSyn mice). ⋯ However, high doses of TRO40303 improved olfaction and produced the same effects as dopamine agonists on a challenging beam test, specifically an increase in footslips, an observation congruent with its effects on transcripts involved in dopamine synthesis. High doses of TRO19622 increased alpha-synuclein aggregates in the substantia nigra; this effect, not seen with TRO40303 was inconsistent and may represent a protective mechanism as in other neurodegenerative diseases. Overall, the results suggest that cholesterol oximes, while not improving early effects of alpha-synuclein overexpression on motor behavior or pathology, may ameliorate the function and resilience of dopaminergic neurons in vivo and support further studies of neuroprotection in models with dopaminergic cell loss.
-
Neurobiology of disease · Aug 2014
Maternal sleep deprivation inhibits hippocampal neurogenesis associated with inflammatory response in young offspring rats.
Although sleep complaints are very common among pregnant women, the potential adverse effects of sleep disturbance on the offspring are not well studied. Growing evidence suggests that maternal stress can induce an inflammatory environment on the fetal development. But people are not sure about the consequences of prenatal stress such as the inflammatory responses induced by maternal sleep deprivation (MSD). ⋯ Real-time RT-PCR showed that after MSD, the expression of pro-inflammatory cytokines (IL-1β, IL-6 and TNFα) increased in the hippocampus of offspring on PND 1, 7, 14 and 21, whereas anti-inflammatory cytokine IL-10 reduced at the same time. Immunofluorescence found that the cells of activated microglia were higher in the brains of MSD offspring. Taken together, these results suggested that the MSD-induced inflammatory response is an important factor for neurogenesis impairment and neurobehavioral outcomes in prepuberty offspring.
-
Neurobiology of disease · Aug 2014
Ketamine administered to pregnant rats in the second trimester causes long-lasting behavioral disorders in offspring.
Commonly used anesthetic agents, e.g. ketamine, may be neurotoxic to the developing brain but there has been little attention to the neurobehavioral consequences for offspring when used for maternal anesthesia. We hypothesize that treatment of pregnant rats with ketamine during the second trimester would affect brain development of the offspring. Pregnant rats on gestational day 14, about equal to midtrimester pregnancy in humans, received a sedative dose of ketamine intravenously for 2h. ⋯ These morphological abnormalities were associated with depression- and anxiety-like behaviors, and impaired memory up to young adult age. The treatment further caused NR2A receptor subunit up-regulation and NR2B receptor subunit, BDNF and PSD-95 down-regulation. These data suggest that maternal anesthesia with ketamine during the fetal brain development period can cause fetal brain damage and subsequent neurobehavioral abnormality, which is likely associated with the imbalanced expression of NMDA receptor subunits.
-
Neurobiology of disease · Jul 2014
Exonic microdeletions of the gephyrin gene impair GABAergic synaptic inhibition in patients with idiopathic generalized epilepsy.
Gephyrin is a postsynaptic scaffolding protein, essential for the clustering of glycine and γ-aminobutyric acid type-A receptors (GABAARs) at inhibitory synapses. An impairment of GABAergic synaptic inhibition represents a key pathway of epileptogenesis. Recently, exonic microdeletions in the gephyrin (GPHN) gene have been associated with neurodevelopmental disorders including autism spectrum disorder, schizophrenia and epileptic seizures. ⋯ GPHN Δ2-3 causes a frameshift resulting in a premature stop codon (p. V22Gfs*7) leading to haplo-insufficiency of the gene. Our results demonstrate that structural exonic microdeletions affecting the GPHN gene constitute a rare genetic risk factor for IGE and other neuropsychiatric disorders by an impairment of the GABAergic inhibitory synaptic transmission.
-
Neurobiology of disease · Jul 2014
TOC1: a valuable tool in assessing disease progression in the rTg4510 mouse model of tauopathy.
All tauopathies result in various forms of cognitive decline and neuronal loss. Although in some diseases, tau mutations appear to cause neurodegeneration, the toxic "form" of tau remains elusive. Tau is the major protein found within neurofibrillary tangles (NFTs) and therefore it seemed rational to assume that aggregation of tau monomers into NFTs was causal to the disease process. ⋯ This indicates a conformational change must occur within the tau aggregate to expose its epitope. Tau oligomers preferentially form under oxidizing conditions and within this mouse model, we observe tau oligomers forming at an increased rate and persisting much longer, most likely due to the aggressive P301L mutation. With the help of other novel antibodies, the use of this antibody will aid in providing a better understanding of tau toxicity within Alzheimer's disease and other tauopathies.