Neurobiology of disease
-
Neurobiology of disease · Mar 2011
Comparative StudyReactive astrocytosis-induced perturbation of synaptic homeostasis is restored by nerve growth factor.
Reactive gliosis has been implicated in both inflammatory and neurodegenerative diseases. However, mechanisms by which astrocytic activation affects synaptic efficacy have been poorly elucidated. We have used the spared nerve injury (SNI) of the sciatic nerve to induce reactive astrocytosis in the lumbar spinal cord and investigate its potential role in disrupting the neuro-glial circuitry. ⋯ Finally, this study also shows that all these structural changes were linked to an alteration of endogenous NGF metabolism, as demonstrated by the decrease of endogenous NGF expression levels and increased activity of the NGF-degrading metalloproteinases. All the changes displayed by SNI-animals were reversed by a 7-days i.t. administration of NGF or GM6001, a generic metalloproteinase inhibitor, as compared to vehicle (ACSF)-treated animals. All together, these data strongly support the correlation between reactive astrogliosis and mechanisms underlying the perturbation of the synaptic circuitry in the SNI model of peripheral nerve injury, and the essential role of NGF in restoring both synaptic homeostasis and the neuroprotective function of glia.
-
Neurobiology of disease · Feb 2011
Modification of ubiquitin-C-terminal hydrolase-L1 by cyclopentenone prostaglandins exacerbates hypoxic injury.
Cyclopentenone prostaglandins (CyPGs), such as 15-deoxy-Δ(12,14) -prostaglandin J(2) (15d-PGJ(2)), are active prostaglandin metabolites exerting a variety of biological effects that may be important in the pathogenesis of neurological diseases. Ubiquitin-C-terminal hydrolase L1 (UCH-L1) is a brain specific deubiquitinating enzyme whose aberrant function has been linked to neurodegenerative disorders. ⋯ Pharmacologic inhibition of UCH-L1 exacerbates hypoxic neuronal death while transduction with a TAT-UCH-L1 fusion protein protects neurons from hypoxia. These studies indicate that UCH-L1 function is important in hypoxic neuronal death and that excessive production of CyPGs after stroke may exacerbate ischemic injury by modification and inhibition of UCH-L1.
-
Neurobiology of disease · Feb 2011
Monocarboxylate transporter 1 is deficient on microvessels in the human epileptogenic hippocampus.
Monocarboxylate transporter 1 (MCT1) facilitates the transport of important metabolic fuels (lactate, pyruvate and ketone bodies) and possibly also acidic drugs such as valproic acid across the blood-brain barrier. Because an impaired brain energy metabolism and resistance to antiepileptic drugs are common features of temporal lobe epilepsy (TLE), we sought to study the expression of MCT1 in the brain of patients with this disease. Immunohistochemistry and immunogold electron microscopy were used to assess the distribution of MCT1 in brain specimens from patients with TLE and concomitant hippocampal sclerosis (referred to as mesial TLE or MTLE (n=15)), patients with TLE and no hippocampal sclerosis (non-MTLE, n=13) and neurologically normal autopsy subjects (n=8). ⋯ Patients with MTLE were markedly deficient in MCT1 on microvessels in several areas of the hippocampal formation, especially CA1, which exhibited a 37% to 48% loss of MCT1 on the plasma membrane of endothelial cells when compared with non-MTLE. These findings suggest that the uptake of blood-derived monocarboxylate fuels and possibly also acidic drugs, such as valproic acid, is perturbed in the epileptogenic hippocampus, particularly in MTLE. We hypothesize that the loss of MCT1 on brain microvessels is mechanistically involved in the pathophysiology of drug-resistant TLE, and propose that re-expression of MCT1 may represent a novel therapeutic approach for this disease.
-
Neurobiology of disease · Feb 2011
NF-κB in the mechanism of brain edema in acute liver failure: studies in transgenic mice.
Astrocyte swelling and brain edema are major complications of the acute form of hepatic encephalopathy (acute liver failure, ALF). While elevated brain ammonia level is a well-known etiological factor in ALF, the mechanism by which ammonia brings about astrocyte swelling is not well understood. We recently found that astrocyte cultures exposed to ammonia activated nuclear factor-κB (NF-κB), and that pharmacological inhibition of such activation led to a reduction in astrocyte swelling. ⋯ By contrast, ammonia significantly increased cell swelling (31.7%) in cultured astrocytes from WT mice and displayed cytological abnormalities. Moreover, we observed a lesser increment in iNOS and NADPH oxidase activity (the latter is also known to be activated by NF-κB and to contribute to astrocyte swelling) in astrocyte cultures from Tg mice treated with ammonia, as compared to ammonia-treated WT mice astrocytes. These findings strongly suggest that activation of NF-κB is a critical factor in the development of astrocyte swelling/brain edema in ALF.
-
Neurobiology of disease · Feb 2011
Comparative StudyMigraine preventive drugs differentially affect cortical spreading depression in rat.
Cortical spreading depression (CSD) is the most likely cause of the migraine aura. Drugs with distinct pharmacological properties are effective in the preventive treatment of migraine. To test the hypothesis that their common denominator might be suppression of CSD we studied in rats the effect of three drugs used in migraine prevention: lamotrigine which is selectively effective on the aura but not on the headache, valproate and riboflavin which have a non-selective effect. ⋯ Lamotrigine has a marked suppressive effect which correlates with its rather selective action on the migraine aura. Valproate and riboflavin have no effect on the triggering of CSD, although they are effective in migraine without aura. Taken together, these results are compatible with a causal role of CSD in migraine with aura, but not in migraine without aura.