Neurobiology of disease
-
Neurobiology of disease · Oct 2010
Pharmacological inhibition of the mammalian target of rapamycin pathway suppresses acquired epilepsy.
Inhibition of mTOR by rapamycin has been shown to suppress seizures in TSC/PTEN genetic models. Rapamycin, when applied immediately before or after a neurological insult, also prevents the development of spontaneous recurrent seizures (epileptogenesis) in an acquired model. In the present study, we examined the mTOR pathway in rats that had already developed chronic spontaneous seizures in a pilocarpine model. ⋯ Furthermore, inhibition of mTOR by rapamycin treatment significantly reduces seizure activity. Finally, mTOR inhibition also significantly suppresses mossy fiber sprouting. Our findings suggest the possibility for a much broader window for intervention for some acquired epilepsies by targeting the mTOR pathway.
-
Neurobiology of disease · Oct 2010
Brain-derived neurotrophic factor rescues and prevents chronic intermittent hypoxia-induced impairment of hippocampal long-term synaptic plasticity.
Obstructive sleep apnea (OSA) is a common sleep and breathing disorder characterized by repeated episodes of hypoxemia. OSA causes neurocognitive deficits including perception and memory impairment but the underlying mechanisms are unknown. Here we show that in a mouse model of OSA, chronic intermittent hypoxia treatment impairs both early- and late-phase long-term potentiation (LTP) in the hippocampus. ⋯ In addition, microinjection of BDNF into the brain of the hypoxic mice prevented the impairment in LTP. These data suggest that intermittent hypoxia impairs hippocampal neuronal excitability and reduces the expression of BDNF leading to deficits in LTP and memory formation. Thus, BDNF level may be a novel therapeutic target for alleviating OSA-induced neurocognitive deficits.
-
Neurobiology of disease · Sep 2010
Acupuncture-mediated inhibition of inflammation facilitates significant functional recovery after spinal cord injury.
Here, we first demonstrated the neuroprotective effect of acupuncture after SCI. Acupuncture applied at two specific acupoints, Shuigou (GV26) and Yanglingquan (GB34) significantly alleviated apoptotic cell death of neurons and oligodendrocytes, thereby leading to improved functional recovery after SCI. ⋯ In addition, acupuncture significantly reduced the expression or activation of pro-nerve growth factor, proinflammatory factors such as tumor necrosis factor-alpha, interleukin-1beta, interleukin-6, nitric oxide synthase, cycloxygenase-2, and matrix metalloprotease-9 after SCI. Thus, our results suggest that the neuroprotection by acupuncture may be partly mediated via inhibition of inflammation and microglial activation after SCI and acupuncture can be used as a potential therapeutic tool for treating acute spinal injury in human.
-
Neurobiology of disease · Jun 2010
ReviewDeep brain stimulation in the treatment of refractory epilepsy: update on current data and future directions.
Deep brain stimulation for epilepsy has garnered attention from epileptologists due to its well-documented success in treating movement disorders and the low morbidity associated with the implantation of electrodes. Given the large proportion of patients who fail medical therapy and are not candidates for surgical amelioration, as well as the suboptimal seizure control offered by vagus nerve stimulation, the search for appropriate brain structures to serve as targets for deep brain stimulation has generated a useful body of evidence to serve as the basis for larger investigations. ⋯ This paper reviews the logic which underlies these potential targets and recapitulates the current data from limited human trials supporting each one. It also provides a succinct overview of the surgical procedure used for electrode implantation.
-
Neurobiology of disease · May 2010
The endocannabinoid 2-arachidonoylglycerol reduces lesion expansion and white matter damage after spinal cord injury.
A series of pathological events secondary to spinal cord injury (SCI) contribute to the spread of the damage, which aggravates neurological deficits. Here we report that a single dose of the neuroprotective endocannabinoid 2-arachidonoyl glycerol (2-AG) administered early after SCI reduces lesion expansion, which was prevented by simultaneous blockade of both CB1 and CB2 receptors but not by blockade of either receptor alone. Treatment with 2-AG also preserves the white matter around the epicenter of the injury. ⋯ In addition to these protective actions at the epicenter region, 2-AG also inhibits the myelin damage and delayed oligodendrocyte loss induced at 10mm from the epicenter. Interestingly, the early protective action of 2-AG is maintained 28 days after injury, when the lesion size is still smaller and the preservation of white matter is better in 2-AG-treated animals. Therefore, our results show that 2-AG protects from the expansion of the lesion and white matter damage, which suggest that this endogenous cannabinoid may be useful as a protective treatment for acute SCI.