Neurobiology of disease
-
Neurobiology of disease · Aug 2009
Increased pain and neurogenic inflammation in mice deficient of neutral endopeptidase.
The complex regional pain syndrome (CRPS) is characterized by enhanced neurogenic inflammation, mediated by neuropeptides. Neutral endopeptidase (NEP) is a key enzyme in neuropeptide catabolism. We used NEP knock out (ko) mice to investigate whether NEP deficiency leads to increased pain behavior and signs of neurogenic inflammation after soft tissue trauma with and without nerve injury. ⋯ Tissue CGRP content did not differ between the genotypes. The results provide evidence that pain behavior and neurogenic inflammation are enhanced in NEP ko mice after nerve injury. These findings resemble human 'cold' CRPS and suggest that ET 1 plays an important role in the pathogenesis of CRPS with nerve injury.
-
Neurobiology of disease · Aug 2009
Dopamine D3 receptor stimulation underlies the development of L-DOPA-induced dyskinesia in animal models of Parkinson's disease.
Development of L-DOPA-induced dyskinesia (LID) remains a major problem in the long-term treatment of Parkinson's disease (PD). Sensitization to L-DOPA correlates with ectopic expression of D3 dopamine receptors in the striatum, implicating D3 receptors in development of LID. We demonstrate that the selective D3 antagonist S33084 abolishes development of LID over 30 days in MPTP-lesioned marmosets without effecting the anti-parkinsonian actions of L-DOPA. ⋯ In the 6-OHDA-lesioned rat, S33084 similarly attenuated development of behavioural sensitization to L-DOPA. Additionally, L-DOPA-induced elevations in striatal pre-proenkephalin-A (PPE-A) (but not PPE-B, phospho[Thr(34)]DARPP-32, D1, and D2 receptor mRNA or D3 receptor levels) were reduced in S33084 treated animals. Our data suggest a role for D3 receptors in the development of LID and suggest that initiating L-DOPA treatment with a D3 antagonist may reduce the development of LID in PD.
-
The systemic rotenone model of Parkinson's disease (PD) accurately replicates many aspects of the pathology of human PD and has provided insights into the pathogenesis of PD. The major limitation of the rotenone model has been its variability, both in terms of the percentage of animals that develop a clear-cut nigrostriatal lesion and the extent of that lesion. The goal here was to develop an improved and highly reproducible rotenone model of PD. ⋯ Rotenone treatment caused a 45% loss of tyrosine hydroxylase-positive substantia nigra neurons and a commensurate loss of striatal dopamine. Additionally, in rotenone-treated animals, alpha-synuclein and poly-ubiquitin positive aggregates were observed in dopamine neurons of the substantia nigra. In summary, this version of the rotenone model is highly reproducible and may provide an excellent tool to test new neuroprotective strategies.
-
Neurobiology of disease · Mar 2009
Beta2-adrenoceptors are essential for desipramine, venlafaxine or reboxetine action in neuropathic pain.
Neuropathic pain is a disease caused by a lesion or dysfunction of the nervous system. Antidepressants or anticonvulsants are presently the best available treatments. The mechanism by which antidepressants relieve neuropathic pain remains poorly understood. ⋯ We showed that chronic antidepressant treatment suppressed cuff-induced allodynia in wild-type mice but not in beta(2)-AR deficient mice, and/or that this antiallodynic action was blocked by intraperitoneal or intrathecal injection of the beta(2)-AR antagonist ICI 118,551 but not by the alpha(2)-AR antagonist yohimbine. We also showed that the anticonvulsant gabapentin was still effective in beta(2)-AR deficient mice. Our results demonstrate that beta(2)-ARs are essential for the antiallodynic action of antidepressant drugs.
-
Neurobiology of disease · Feb 2009
Molecular mechanisms of spinal cord dysfunction and cell death in the spinal hyperostotic mouse: implications for the pathophysiology of human cervical spondylotic myelopathy.
Cervical spondylotic myelopathy (CSM) is the most common cause of spinal cord dysfunction in adults in Western society. Paradoxically, relatively little is known about the pathobiological mechanisms associated with the progressive loss of neural tissue in the spinal cord of CSM patients. ⋯ This study reports novel evidence, which demonstrates that chronic extrinsic cervical spinal cord compression leads to Fas-mediated apoptosis of neurons and oligodendrocytes which is associated with activation of caspase-8, -9 and -3 and progressive neurological deficits. While surgical decompression will remain the mainstay of management of CSM, molecular therapies, which target Fas-mediated apoptosis could show promise as a complementary approach to maximize neurological recovery in this common spinal cord condition.