Molecular medicine
-
Controlled Clinical Trial
Gastrin-releasing peptide receptor antagonism induces protection from lethal sepsis: involvement of toll-like receptor 4 signaling.
In sepsis, toll-like receptor (TLR)-4 modulates the migration of neutrophils to infectious foci, favoring bacteremia and mortality. In experimental sepsis, organ dysfunction and cytokines released by activated macrophages can be reduced by gastrin-releasing peptide (GRP) receptor (GRPR) antagonist RC-3095. Here we report a link between GRPR and TLR-4 in experimental models and in sepsis patients. ⋯ RC-3095 treatment in CLP rats decreased lung TLR-4, reduced the migration of cells to the lung and reduced systemic cytokines and bacterial dissemination. Patients with sepsis and systemic inflammatory response syndrome have elevated plasma levels of GRP, which associates with clinical outcome in the sepsis patients. These findings highlight the role of GRPR signaling in sepsis outcome and the beneficial action of GRPR antagonists in controlling the inflammatory response in sepsis through a mechanism involving at least inhibition of TLR-4 signaling.
-
The pathogenesis of sepsis is characterized by overwhelming inflammatory responses that lead to tissue damage and organ failure. Toll-like receptor (TLR) signaling is crucial for induction of hyperinflammatory responses and tissue injury during sepsis. Genipin, an aglycon of geniposide, has antiinflammatory and antimicrobial activities. ⋯ Pam3CSK4- and LPS-mediated production of nitrites and proinflammatory cytokines was suppressed by genipin in RAW264.7 cells. Genipin attenuated mortality and organ injuries during sepsis through interference with TLR signaling. Therefore, genipin might be useful as a potential therapeutic agent for treatment of sepsis.