Molecular medicine
-
Traumatic brain injury (TBI) and hemorrhagic shock often occur concomitantly due to multiple injuries. Gastrointestinal dysfunction occurs frequently in patients with TBI. However, whether alterations in the gastrointestinal system are involved in modulating neuronal damage and recovery after TBI is largely neglected. ⋯ The animals were monitored for 28 d to record body weight changes, neurological severity scale and survival. Our results showed that ghrelin downregulated brain levels of TNF-α and IL-6, reduced cortical levels of cleaved PARP-1, improved sensorimotor and reflex functions, and decreased mortality after TBI/UH. Thus, ghrelin has a great potential to be further developed as an effective resuscitation approach for the trauma victims with brain injury and severe blood loss.
-
High mobility group box 1 (HMGB1) is a nuclear protein with extracellular inflammatory cytokine activity. It is released passively during cell injury and necrosis, and secreted actively by immune cells. HMGB1 contains three conserved redox-sensitive cysteine residues: C23 and C45 can form an intramolecular disulfide bond, whereas C106 is unpaired and is essential for the interaction with Toll-Like Receptor (TLR) 4. ⋯ Both irreversible oxidation to sulphonates and complete reduction to thiols of these cysteines inhibited TNF production markedly. In a proof of concept murine model of hepatic necrosis induced by acetaminophen, during inflammation, the predominant form of serum HMGB1 is the active one, containing a C106 thiol group and a disulfide bond between C23 and C45, whereas the inactive form of HMGB1, containing terminally oxidized cysteines, accumulates during inflammation resolution and hepatic regeneration. These results reveal critical posttranslational redox mechanisms that control the proinflammatory activity of HMGB1 and its inactivation during pathogenesis.
-
Pulmonary infection with Pseudomonas aeruginosa and neutrophilic lung inflammation significantly contribute to morbidity and mortality in cystic fibrosis (CF). High-mobility group box 1 protein (HMGB1), a ubiquitous DNA binding protein that promotes inflammatory tissue injury, is significantly elevated in CF sputum. However, its mechanistic and potential therapeutic implications in CF were previously unknown. ⋯ The HMGB1-mediated suppression of bacterial phagocytosis was attenuated in macrophages lacking toll-like receptor (TLR)-4, suggesting a critical role for TLR4 in signaling HMGB1-mediated macrophage dysfunction. These studies demonstrate that the elevated levels of HMGB1 in CF airways are critical for neutrophil recruitment and persistent presence of P. aeruginosa in the lung. Thus, HMGB1 may provide a therapeutic target for reducing bacterial infection and lung inflammation in CF.
-
In preclinical studies, erythropoietin (EPO) reduces ischemia-reperfusion-associated tissue injury (for example, stroke, myocardial infarction, acute kidney injury, hemorrhagic shock and liver ischemia). It has been proposed that the erythropoietic effects of EPO are mediated by the classic EPO receptor homodimer, whereas the tissue-protective effects are mediated by a hetero-complex between the EPO receptor monomer and the β-common receptor (termed "tissue-protective receptor"). ⋯ Both pHBSP and EPO enhanced the phosphorylation of Akt (activation) and glycogen synthase kinase 3β (inhibition) in the rat kidney after ischemia-reperfusion, resulting in prevention of the activation of nuclear factor-κB (reduction in nuclear translocation of p65). Interestingly, the phosphorylation of endothelial nitric oxide synthase was enhanced by EPO and, to a much lesser extent, by pHBSP, suggesting that the signaling pathways activated by EPO and pHBSP may not be identical.
-
Bacterial pneumonia remains associated with high morbidity and mortality. The gram-positive pathogen Streptococcus pneumoniae is the most common cause of community-acquired pneumonia. Lipoteichoic acid (LTA) is an important proinflammatory component of the gram-positive bacterial cell wall. ⋯ R-roscovitine inhibits proinflammatory responses induced by the gram-positive stimuli LTA and S. pneumoniae. R-roscovitine reduces PMN numbers in lungs upon LTA administration by enhancing apoptosis. The reduction in PMN numbers caused by R-roscovitine during S. pneumoniae pneumonia may hamper antibacterial defense.