Journal of investigative medicine : the official publication of the American Federation for Clinical Research
-
Accelerating the translation of new scientific discoveries to improve human health and disease management is the overall goal of a series of initiatives integrated in the National Institutes of Health (NIH) "Roadmap for Medical Research." The Clinical and Translational Science Award (CTSA) program is, arguably, the most visible component of the NIH Roadmap providing resources to institutions to transform their clinical and translational research enterprises along the goals of the Roadmap. The CTSA program emphasizes biomedical informatics as a critical component for the accomplishment of the NIH's translational objectives. To be optimally effective, emerging biomedical informatics programs must link with the information technology platforms of the enterprise clinical operations within academic health centers. ⋯ This transdisciplinary initiative was the impetus for creation of a specialized biomedical informatics core, the Center for Biomedical Informatics (CBI). Development of the CBI codified the need to incorporate medical informatics including quality and safety informatics and enterprise clinical information systems within the CBI. This article describes the steps taken to develop the biomedical informatics infrastructure, its integration with clinical systems at one academic health center, successes achieved, and barriers encountered during these efforts.
-
Universities and academic medical centers have been increasing their focus on technology transfer and research commercialization. With this shift in focus, academic-industry ties have become prevalent. ⋯ This paper briefly explores some of these conflicts of interest, particularly relating to research and training. This paper also discusses some of the policies that have been, and are being, developed to try to mitigate and manage these conflicts so that academic involvement in technology transfer and commercialization can continue without jeopardizing academic work or the public's trust in them.
-
Our understanding of human biology has increased tremendously for the last several decades, yet the pace at which these discoveries have translated into new therapies for patients has been frustratingly stagnant. Universities and academic health centers, as the major recipients of public investment in biomedical science, have an obligation to translate new knowledge into applications that confer human benefit. ⋯ The purpose of this article is to examine the early-stage drug development process and evaluate the role that academia could play in it. Because interest in early-stage drug development grows among academic investigators, the need for more integrated partnerships among academia, government, and industry has become increasingly apparent.
-
Our recent study defined the chemokine-induced human monocyte signaling under normoglycemic condition. To explore the hyperglycemia-induced monocyte signaling, we performed adhesion, migration, and transmigration assays on human monocytes obtained from THP-1 cell line in the presence of normal (5 mM) and high (10 and 20 mM) glucose concentrations without chemokines. We observed augmented (P < 0.01) monocyte adhesion to human umbilical vein endothelial cell monolayer at 10 than 5 mM glucose with no further increase at 20-mM glucose concentration (P < 0.07 vs 10 mM; P < 0.01 vs 5 mM). ⋯ Furthermore, hyperglycemia (both 10 and 20 mM)-treated monocyte showed up-regulated phosphorylation of p101 and p110γ subunits of PI-3 kinase in comparison to 5 mM glucose. Hyperglycemia-induced monocyte migration was restored to basal levels in the presence of PI-3 kinase inhibitor, LY. These observations imply that modest hyperglycemia per se, as is commonly observed in diabetic individuals, is a potent stimulator of monocyte activity even without chemokines.