Nature medicine
-
Frameshift mutations in the DMD gene, encoding dystrophin, cause Duchenne muscular dystrophy (DMD), leading to terminal muscle and heart failure in patients. Somatic gene editing by sequence-specific nucleases offers new options for restoring the DMD reading frame, resulting in expression of a shortened but largely functional dystrophin protein. Here, we validated this approach in a pig model of DMD lacking exon 52 of DMD (DMDΔ52), as well as in a corresponding patient-derived induced pluripotent stem cell model. ⋯ Moreover, systemic application of AAV9-Cas9-gE51 led to widespread dystrophin expression in muscle, including diaphragm and heart, prolonging survival and reducing arrhythmogenic vulnerability. Similarly, in induced pluripotent stem cell-derived myoblasts and cardiomyocytes of a patient lacking DMDΔ52, AAV6-Cas9-g51-mediated excision of exon 51 restored dystrophin expression and amelioreate skeletal myotube formation as well as abnormal cardiomyocyte Ca2+ handling and arrhythmogenic susceptibility. The ability of Cas9-mediated exon excision to improve DMD pathology in these translational models paves the way for new treatment approaches in patients with this devastating disease.
-
Recombinant vesicular stomatitis virus-Zaire Ebola virus (rVSV-ZEBOV) is the most advanced Ebola virus vaccine candidate and is currently being used to combat the outbreak of Ebola virus disease (EVD) in the Democratic Republic of the Congo (DRC). Here we examine the humoral immune response in a subset of human volunteers enrolled in a phase 1 rVSV-ZEBOV vaccination trial by performing comprehensive single B cell and electron microscopy structure analyses. Four studied vaccinees show polyclonal, yet reproducible and convergent B cell responses with shared sequence characteristics. ⋯ Moreover, in all vaccinees, we detected highly potent EBOV-neutralizing antibodies with activities comparable or superior to the monoclonal antibodies currently used in clinical trials. These include antibodies combining the IGHV3-15/IGLV1-40 immunoglobulin gene segments that were identified in all investigated individuals. Our findings will help to evaluate and direct current and future vaccination strategies and offer opportunities for novel EVD therapies.
-
Randomized Controlled Trial
Gut microbiome alteration in MORDOR I: a community-randomized trial of mass azithromycin distribution.
The MORDOR I trial1, conducted in Niger, Malawi and Tanzania, demonstrated that mass azithromycin distribution to preschool children reduced childhood mortality1. However, the large but simple trial design precluded determination of the mechanisms involved. Here we examined the gut microbiome of preschool children from 30 Nigerien communities randomized to either biannual azithromycin or placebo. ⋯ Metagenomic analysis revealed functional differences in gut bacteria between treatment groups. Resistome analysis showed an increase in macrolide resistance gene expression in gut microbiota in communities treated with azithromycin (P = 0.004). These results suggest that prolonged mass azithromycin distribution to reduce childhood mortality reduces certain gut bacteria, including known pathogens, while selecting for antibiotic resistance.
-
Melanoma treatment has progressed in the past decade with the development and approval of immune checkpoint inhibitors targeting programmed death 1 (PD-1) or its ligand (PD-L1) and cytotoxic T lymphocyte-associated antigen 4, as well as small molecule inhibitors of BRAF and/or MEK for the subgroup of patients with BRAFV600 mutations1-9. BRAF/MEK-targeted therapies have effects on the tumor microenvironment that support their combination with PD-1/PD-L1 inhibitors10-20. This phase Ib study (ClinicalTrials.gov, number NCT01656642 ) evaluated the safety and anti-tumor activity of combining atezolizumab (anti-PD-L1) with vemurafenib (BRAF inhibitor), or cobimetinib (MEK inhibitor) + vemurafenib, in patients with BRAFV600-mutated metastatic melanoma. ⋯ The confirmed objective response rate was 71.8% (95% confidence interval 55.1-85.0). The estimated median duration of response was 17.4 months (95% confidence interval 10.6-25.3) with ongoing response in 39.3% of patients after 29.9 months of follow-up. Further investigation in a phase III trial is underway.