Arteriosclerosis, thrombosis, and vascular biology
-
Arterioscler. Thromb. Vasc. Biol. · Jul 2014
Tissue plasminogen activator promotes postischemic neutrophil recruitment via its proteolytic and nonproteolytic properties.
Neutrophil infiltration of the postischemic tissue considerably contributes to organ dysfunction on ischemia/reperfusion injury. Beyond its established role in fibrinolysis, tissue-type plasminogen activator (tPA) has recently been implicated in nonfibrinolytic processes. The role of this serine protease in the recruitment process of neutrophils remains largely obscure. ⋯ Endogenously released tPA promotes neutrophil transmigration to reperfused tissue via proteolytic activation of plasmin and gelatinases. As a consequence, tPA on transmigrating neutrophils disrupts endothelial junctions allowing circulating tPA to extravasate to the perivascular tissue, which, in turn, amplifies neutrophil recruitment through the activation of mast cells and release of lipid mediators.
-
Arterioscler. Thromb. Vasc. Biol. · Jul 2014
Lysyl oxidases play a causal role in vascular remodeling in clinical and experimental pulmonary arterial hypertension.
Pulmonary vascular remodeling, the pathological hallmark of pulmonary arterial hypertension, is attributed to proliferation, apoptosis resistance, and migration of vascular cells. A role of dysregulated matrix cross-linking and stability as a pathogenic mechanism has received little attention. We aimed to assess whether matrix cross-linking enzymes played a causal role in experimental pulmonary hypertension (PH). ⋯ Lysyl oxidases are dysregulated in clinical and experimental PH. Lysyl oxidases play a causal role in experimental PH and represent a candidate therapeutic target. Our proof-of-principle study demonstrated that modulation of lung matrix cross-linking can affect pulmonary vascular remodeling associated with PH.
-
Arterioscler. Thromb. Vasc. Biol. · Jun 2014
Comparative StudyComparative genome-wide association studies in mice and humans for trimethylamine N-oxide, a proatherogenic metabolite of choline and L-carnitine.
Elevated levels of plasma trimethylamine N-oxide (TMAO), the product of gut microbiome and hepatic-mediated metabolism of dietary choline and L-carnitine, have recently been identified as a novel risk factor for the development of atherosclerosis in mice and humans. The goal of this study was to identify the genetic factors associated with plasma TMAO levels. ⋯ The results of these limited observational studies indicate that, at least in humans, genes play a marginal role in determining TMAO levels and that any genetic effects are relatively weak and complex. Variation in diet or the repertoire of gut microbiota may be more important determinants of plasma TMAO levels in mice and humans, which should be investigated in future studies.
-
Arterioscler. Thromb. Vasc. Biol. · Jun 2014
Hepatic overexpression of idol increases circulating protein convertase subtilisin/kexin type 9 in mice and hamsters via dual mechanisms: sterol regulatory element-binding protein 2 and low-density lipoprotein receptor-dependent pathways.
Low-density lipoprotein receptor (LDLR) is degraded by inducible degrader of LDLR (Idol) and protein convertase subtilisin/kexin type 9 (PCSK9), thereby regulating circulating LDL levels. However, it remains unclear whether, and if so how, these LDLR degraders affect each other. We therefore investigated effects of liver-specific expression of Idol on LDL/PCSK9 metabolism in mice and hamsters. ⋯ A vicious cycle in LDLR degradation might be generated by PCSK9 induced by hepatic Idol overexpression via dual mechanisms: sterol regulatory element-binding protein 2/LDLR. Furthermore, these effects would be independent of cholesteryl ester transfer protein expression.
-
Arterioscler. Thromb. Vasc. Biol. · May 2014
Gene deletion of protein tyrosine phosphatase 1B protects against sepsis-induced cardiovascular dysfunction and mortality.
Cardiovascular dysfunction is a major cause of mortality in patients with sepsis. Recently, we showed that gene deletion or pharmacological inhibition of protein tyrosine phosphatase 1B (PTP1B) improves endothelial dysfunction and reduces the severity of experimental heart failure. However, the cardiovascular effect of PTP1B invalidation in sepsis is unknown. Thus, we explored the beneficial therapeutic effect of PTP1B gene deletion on lipopolysaccharide (LPS)-induced cardiovascular dysfunction, inflammation, and mortality. ⋯ PTP1B gene deletion protects against septic shock-induced cardiovascular dysfunction and mortality, and this may be the result of the profound reduction of cardiovascular inflammation. PTP1B is an attractive target for the treatment of sepsis.